A Lightweight Generative Model for Interpretable Subject-level Prediction
- URL: http://arxiv.org/abs/2306.11107v3
- Date: Fri, 11 Oct 2024 14:38:07 GMT
- Title: A Lightweight Generative Model for Interpretable Subject-level Prediction
- Authors: Chiara Mauri, Stefano Cerri, Oula Puonti, Mark Mühlau, Koen Van Leemput,
- Abstract summary: We propose a technique for single-subject prediction that is inherently interpretable.
Experiments demonstrate that the resulting model can be efficiently inverted to make accurate subject-level predictions.
- Score: 0.07989135005592125
- License:
- Abstract: Recent years have seen a growing interest in methods for predicting an unknown variable of interest, such as a subject's diagnosis, from medical images depicting its anatomical-functional effects. Methods based on discriminative modeling excel at making accurate predictions, but are challenged in their ability to explain their decisions in anatomically meaningful terms. In this paper, we propose a simple technique for single-subject prediction that is inherently interpretable. It augments the generative models used in classical human brain mapping techniques, in which the underlying cause-effect relations can be encoded, with a multivariate noise model that captures dominant spatial correlations. Experiments demonstrate that the resulting model can be efficiently inverted to make accurate subject-level predictions, while at the same time offering intuitive visual explanations of its inner workings. The method is easy to use: training is fast for typical training set sizes, and only a single hyperparameter needs to be set by the user. Our code is available at https://github.com/chiara-mauri/Interpretable-subject-level-prediction.
Related papers
- Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Explainability as statistical inference [29.74336283497203]
We propose a general deep probabilistic model designed to produce interpretable predictions.
The model parameters can be learned via maximum likelihood, and the method can be adapted to any predictor network architecture.
We show experimentally that using multiple imputation provides more reasonable interpretations.
arXiv Detail & Related papers (2022-12-06T16:55:10Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
Differentiable causal discovery has proposed to factorize the data generating process into a set of modules.
We study the generalization and adaption performance of such modular neural causal models.
Our analysis shows that the modular neural causal models outperform other models on both zero and few-shot adaptation in low data regimes.
arXiv Detail & Related papers (2022-06-09T17:12:32Z) - On the Lack of Robust Interpretability of Neural Text Classifiers [14.685352584216757]
We assess the robustness of interpretations of neural text classifiers based on pretrained Transformer encoders.
Both tests show surprising deviations from expected behavior, raising questions about the extent of insights that practitioners may draw from interpretations.
arXiv Detail & Related papers (2021-06-08T18:31:02Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
Human-readability is an important and desirable standard for machine-learned model interpretability.
We propose to train interpretable models using conventional methods, and then distill them into concise, human-readable code.
We describe a piecewise-linear curve-fitting algorithm that produces high-quality results efficiently and reliably across a broad range of use cases.
arXiv Detail & Related papers (2021-01-21T01:46:36Z) - Using StyleGAN for Visual Interpretability of Deep Learning Models on
Medical Images [0.7874708385247352]
We propose a new interpretability method that can be used to understand the predictions of any black-box model on images.
A StyleGAN is trained on medical images to provide a mapping between latent vectors and images.
By shifting the latent representation of an input image along this direction, we can produce a series of new synthetic images with changed predictions.
arXiv Detail & Related papers (2021-01-19T11:13:20Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
We propose a novel scalable method to learn double-robust representations for counterfactual predictions.
We make robust and efficient counterfactual predictions for both individual and average treatment effects.
The algorithm shows competitive performance with the state-of-the-art on real world and synthetic data.
arXiv Detail & Related papers (2020-10-15T16:39:26Z) - Deducing neighborhoods of classes from a fitted model [68.8204255655161]
In this article a new kind of interpretable machine learning method is presented.
It can help to understand the partitioning of the feature space into predicted classes in a classification model using quantile shifts.
Basically, real data points (or specific points of interest) are used and the changes of the prediction after slightly raising or decreasing specific features are observed.
arXiv Detail & Related papers (2020-09-11T16:35:53Z) - An interpretable neural network model through piecewise linear
approximation [7.196650216279683]
We propose a hybrid interpretable model that combines a piecewise linear component and a nonlinear component.
The first component describes the explicit feature contributions by piecewise linear approximation to increase the expressiveness of the model.
The other component uses a multi-layer perceptron to capture feature interactions and implicit nonlinearity, and increase the prediction performance.
arXiv Detail & Related papers (2020-01-20T14:32:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.