論文の概要: Correcting Underrepresentation and Intersectional Bias for Fair
Classification
- arxiv url: http://arxiv.org/abs/2306.11112v1
- Date: Mon, 19 Jun 2023 18:25:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-21 16:39:52.962023
- Title: Correcting Underrepresentation and Intersectional Bias for Fair
Classification
- Title(参考訳): 公平な分類のための修正下表現と断面バイアス
- Authors: Alexander Williams Tolbert and Emily Diana
- Abstract要約: 偏見バイアスによって劣化したデータから学習する問題について考察し, 正の例を, 一定の数のセンシティブなグループに対して, 異なる未知のレートでフィルタする。
交叉群のメンバーシップが各交叉率を計算不能にするような設定であっても,少数の偏りのないデータを用いてグループワイド・ドロップアウトパラメータを効率的に推定できることが示される。
我々は,この学習と再重み付け過程をカプセル化するアルゴリズムを提案し,高い確率で真の分布に対する仮説のリスクが任意に近いことをPACスタイルの強い保証を提供する。
- 参考スコア(独自算出の注目度): 77.34726150561087
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of learning from data corrupted by
underrepresentation bias, where positive examples are filtered from the data at
different, unknown rates for a fixed number of sensitive groups. We show that
with a small amount of unbiased data, we can efficiently estimate the
group-wise drop-out parameters, even in settings where intersectional group
membership makes learning each intersectional rate computationally infeasible.
Using this estimate for the group-wise drop-out rate, we construct a
re-weighting scheme that allows us to approximate the loss of any hypothesis on
the true distribution, even if we only observe the empirical error on a biased
sample. Finally, we present an algorithm encapsulating this learning and
re-weighting process, and we provide strong PAC-style guarantees that, with
high probability, our estimate of the risk of the hypothesis over the true
distribution will be arbitrarily close to the true risk.
- Abstract(参考訳): 偏見バイアスによって劣化したデータから学習することの問題点を考察し, 正の例を, 一定数のセンシティブなグループに対して異なる未知のレートでフィルタする。
非偏りの少ないデータを用いて,交叉グループのメンバシップが各交叉率を計算不能に学習する場合でも,グループ毎のドロップアウトパラメータを効率的に推定できることを示す。
このグループ毎のドロップアウト率の推定を用いて、バイアスのあるサンプルでの経験的誤差のみを観測しても、真の分布上の任意の仮説の損失を近似できる再重み付けスキームを構築する。
最後に、この学習および再重み付けプロセスをカプセル化するアルゴリズムを提案し、高い確率で、真の分布に対する仮説のリスクの推定が真のリスクに任意に近づくことを、PACスタイルの強い保証を提供する。
関連論文リスト
- Collaborative Learning with Different Labeling Functions [7.228285747845779]
我々は、$n$のデータ分布ごとに正確な分類器を学習することを目的とした、協調型PAC学習の亜種について研究する。
データ分布がより弱い実現可能性の仮定を満たす場合、サンプル効率の学習は依然として可能であることを示す。
論文 参考訳(メタデータ) (2024-02-16T04:32:22Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
D-BIASは、人間のループ内AIアプローチを具現化し、社会的バイアスを監査し軽減する視覚対話型ツールである。
ユーザは、因果ネットワークにおける不公平な因果関係を識別することにより、グループに対する偏見の存在を検出することができる。
それぞれのインタラクション、例えばバイアスのある因果縁の弱体化/削除は、新しい(偏りのある)データセットをシミュレートするために、新しい方法を用いている。
論文 参考訳(メタデータ) (2022-08-10T03:41:48Z) - Learning to Split for Automatic Bias Detection [39.353850990332525]
Learning to Split (ls)は自動バイアス検出のためのアルゴリズムである。
我々は,Beer Review,CelebA,MNLIに対するアプローチを評価した。
論文 参考訳(メタデータ) (2022-04-28T19:41:08Z) - Fair Group-Shared Representations with Normalizing Flows [68.29997072804537]
本研究では,異なるグループに属する個人を1つのグループにマッピングできる公正表現学習アルゴリズムを開発した。
提案手法は,他の公正表現学習アルゴリズムと競合することを示す。
論文 参考訳(メタデータ) (2022-01-17T10:49:49Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
対象タスクが誤用したバイアス情報を除去するために,クロスサンプル対逆脱バイアス法(CSAD)を提案する。
相関測定は, 対向的偏り評価において重要な役割を担い, クロスサンプル型相互情報推定器によって行われる。
我々は,提案手法の最先端手法に対する利点を検証するために,公開データセットの徹底的な実験を行った。
論文 参考訳(メタデータ) (2021-08-11T21:17:02Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - Learning Unbiased Representations via Mutual Information Backpropagation [36.383338079229695]
特に、モデルによって学習された場合、データのいくつかの属性(バイアス)が一般化特性を著しく損なう可能性がある場合に直面します。
本稿では,学習した表現とデータ属性の相互情報を同時に推定し,最小化する,新しいエンドツーエンド最適化手法を提案する。
論文 参考訳(メタデータ) (2020-03-13T18:06:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。