論文の概要: Supervised Auto-Encoding Twin-Bottleneck Hashing
- arxiv url: http://arxiv.org/abs/2306.11122v1
- Date: Mon, 19 Jun 2023 18:50:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-21 16:41:11.563756
- Title: Supervised Auto-Encoding Twin-Bottleneck Hashing
- Title(参考訳): 自動エンコードによるツインボネックハッシュ
- Authors: Yuan Chen, St\'ephane Marchand-Maillet
- Abstract要約: Twin-Bottleneck Hashingはグラフを動的に構築する手法である。
本研究では,ラベル情報を組み込むことで,オリジナルモデルを教師付きディープハッシュネットワークに一般化する。
- 参考スコア(独自算出の注目度): 5.653113092257149
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep hashing has shown to be a complexity-efficient solution for the
Approximate Nearest Neighbor search problem in high dimensional space. Many
methods usually build the loss function from pairwise or triplet data points to
capture the local similarity structure. Other existing methods construct the
similarity graph and consider all points simultaneously. Auto-encoding
Twin-bottleneck Hashing is one such method that dynamically builds the graph.
Specifically, each input data is encoded into a binary code and a continuous
variable, or the so-called twin bottlenecks. The similarity graph is then
computed from these binary codes, which get updated consistently during the
training. In this work, we generalize the original model into a supervised deep
hashing network by incorporating the label information. In addition, we examine
the differences of codes structure between these two networks and consider the
class imbalance problem especially in multi-labeled datasets. Experiments on
three datasets yield statistically significant improvement against the original
model. Results are also comparable and competitive to other supervised methods.
- Abstract(参考訳): ディープハッシュは高次元空間における近似近傍探索問題に対する複雑性効率のよい解であることが示されている。
多くの方法は通常、局所的類似性構造を捉えるためにペアワイズまたはトリプルトデータポイントから損失関数を構築する。
他の既存の手法は類似性グラフを構築し、全ての点を同時に考える。
Twin-Bottleneck Hashingはグラフを動的に構築する手法である。
具体的には、各入力データはバイナリコードと連続変数、いわゆるツインボトルネックにエンコードされる。
類似度グラフはこれらのバイナリコードから計算され、トレーニング中に一貫して更新される。
本研究では,ラベル情報を組み込むことで,オリジナルモデルを教師付きディープハッシュネットワークに一般化する。
さらに,これら2つのネットワーク間の符号構造の違いを調べ,特にマルチラベルデータセットにおけるクラス不均衡問題を検討する。
3つのデータセットの実験は、オリジナルのモデルに対して統計的に有意な改善をもたらす。
結果は他の教師付き手法と同等で競合する。
関連論文リスト
- Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
グラフマッチングはコンピュータビジョンやパターン認識において一般的に用いられる技法である。
最近のデータ駆動型アプローチは、グラフマッチングの精度を著しく改善した。
データ駆動手法と従来の手法の利点を組み合わせたグラフニューラルネットワーク(GNN)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-11T06:34:05Z) - Graph-Collaborated Auto-Encoder Hashing for Multi-view Binary Clustering [11.082316688429641]
マルチビューバイナリクラスタリングのための自動エンコーダに基づくハッシュアルゴリズムを提案する。
具体的には,低ランク制約を用いた多視点親和性グラフ学習モデルを提案する。
また、複数の親和性グラフを協調して協調するエンコーダ・デコーダのパラダイムを設計し、統一されたバイナリコードを効果的に学習する。
論文 参考訳(メタデータ) (2023-01-06T12:43:13Z) - One Loss for All: Deep Hashing with a Single Cosine Similarity based
Learning Objective [86.48094395282546]
ディープハッシュモデルは通常、学習されたバイナリハッシュコードの識別と量子化エラーの最小化という2つの学習目標を持つ。
本稿では,1つの学習目的しか持たない新しい深層ハッシュモデルを提案する。
我々のモデルは,3つの大規模インスタンス検索ベンチマークにおいて,最先端のマルチロスハッシュモデルより優れている。
論文 参考訳(メタデータ) (2021-09-29T14:27:51Z) - Rank-Consistency Deep Hashing for Scalable Multi-Label Image Search [90.30623718137244]
スケーラブルなマルチラベル画像検索のための新しいディープハッシュ法を提案する。
2つの空間の類似性順序を整列するために、新しい階数整合性目的を適用した。
強力な損失関数は、意味的類似性とハミング距離が一致しないサンプルをペナルティ化するように設計されている。
論文 参考訳(メタデータ) (2021-02-02T13:46:58Z) - Comprehensive Graph-conditional Similarity Preserving Network for
Unsupervised Cross-modal Hashing [97.44152794234405]
教師なしクロスモーダルハッシュ(UCMH)は近年ホットトピックとなっている。
本稿では,dgcpn(deep graph-neighbor coherence preservation network)を考案する。
DGCPNは3種類のデータ類似性を利用して、損失を保存する包括的な類似性を管理する。
論文 参考訳(メタデータ) (2020-12-25T07:40:59Z) - CIMON: Towards High-quality Hash Codes [63.37321228830102]
我々はtextbfComprehensive stextbfImilarity textbfMining と ctextbfOnsistency leartextbfNing (CIMON) という新しい手法を提案する。
まず、グローバルな洗練と類似度統計分布を用いて、信頼性とスムーズなガイダンスを得る。第二に、意味的整合性学習とコントラスト的整合性学習の両方を導入して、乱不変と差別的ハッシュコードの両方を導出する。
論文 参考訳(メタデータ) (2020-10-15T14:47:14Z) - Self-Supervised Bernoulli Autoencoders for Semi-Supervised Hashing [1.8899300124593648]
本稿では,変分オートエンコーダに基づくハッシュ手法のロバスト性と,監督の欠如について検討する。
本稿では,モデルがラベル分布予測を用いて一対の目的を実現する新しい監視手法を提案する。
実験の結果,いずれの手法もハッシュコードの品質を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2020-07-17T07:47:10Z) - Learning to hash with semantic similarity metrics and empirical KL
divergence [3.04585143845864]
ハッシュの学習は、大規模データベースからの近接探索を正確に、そして近似的に行うための効率的なパラダイムである。
バイナリハッシュコードは典型的には、CNNから出力特徴を丸め、イメージから抽出される。
i) 学習特徴の相対的なハッシュコード距離を目標値と一致するように促進する新規な損失関数により, (i) を克服する。
我々は、ネットワーク出力とバイナリターゲット分布のKL分散の微分可能な推定を通じて、(ii)に対処し、その結果、特徴がバイナリに丸められたときの情報損失を最小限に抑える。
論文 参考訳(メタデータ) (2020-05-11T08:20:26Z) - Auto-Encoding Twin-Bottleneck Hashing [141.5378966676885]
本稿では,効率よく適応的なコード駆動グラフを提案する。
自動エンコーダのコンテキストでデコードすることで更新される。
ベンチマークデータセットの実験は、最先端のハッシュ手法よりもフレームワークの方が優れていることを明らかに示しています。
論文 参考訳(メタデータ) (2020-02-27T05:58:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。