Transforming Graphs for Enhanced Attribute Clustering: An Innovative
Graph Transformer-Based Method
- URL: http://arxiv.org/abs/2306.11307v3
- Date: Sat, 12 Aug 2023 14:37:23 GMT
- Title: Transforming Graphs for Enhanced Attribute Clustering: An Innovative
Graph Transformer-Based Method
- Authors: Shuo Han, Jiacheng Liu, Jiayun Wu, Yinan Chen, Li Tao
- Abstract summary: This study introduces an innovative method known as the Graph Transformer Auto-Encoder for Graph Clustering (GTAGC)
By melding the Graph Auto-Encoder with the Graph Transformer, GTAGC is adept at capturing global dependencies between nodes.
The architecture of GTAGC encompasses graph embedding, integration of the Graph Transformer within the autoencoder structure, and a clustering component.
- Score: 8.989218350080844
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Representation Learning (GRL) is an influential methodology, enabling a
more profound understanding of graph-structured data and aiding graph
clustering, a critical task across various domains. The recent incursion of
attention mechanisms, originally an artifact of Natural Language Processing
(NLP), into the realm of graph learning has spearheaded a notable shift in
research trends. Consequently, Graph Attention Networks (GATs) and Graph
Attention Auto-Encoders have emerged as preferred tools for graph clustering
tasks. Yet, these methods primarily employ a local attention mechanism, thereby
curbing their capacity to apprehend the intricate global dependencies between
nodes within graphs. Addressing these impediments, this study introduces an
innovative method known as the Graph Transformer Auto-Encoder for Graph
Clustering (GTAGC). By melding the Graph Auto-Encoder with the Graph
Transformer, GTAGC is adept at capturing global dependencies between nodes.
This integration amplifies the graph representation and surmounts the
constraints posed by the local attention mechanism. The architecture of GTAGC
encompasses graph embedding, integration of the Graph Transformer within the
autoencoder structure, and a clustering component. It strategically alternates
between graph embedding and clustering, thereby tailoring the Graph Transformer
for clustering tasks, whilst preserving the graph's global structural
information. Through extensive experimentation on diverse benchmark datasets,
GTAGC has exhibited superior performance against existing state-of-the-art
graph clustering methodologies.
Related papers
- Greener GRASS: Enhancing GNNs with Encoding, Rewiring, and Attention [12.409982249220812]
We introduce Graph Attention with Structures (GRASS), a novel GNN architecture, to enhance graph relative attention.
GRASS rewires the input graph by superimposing a random regular graph to achieve long-range information propagation.
It also employs a novel additive attention mechanism tailored for graph-structured data.
arXiv Detail & Related papers (2024-07-08T06:21:56Z) - Graph External Attention Enhanced Transformer [20.44782028691701]
We propose Graph External Attention (GEA) -- a novel attention mechanism that leverages multiple external node/edge key-value units to capture inter-graph correlations implicitly.
On this basis, we design an effective architecture called Graph External Attention Enhanced Transformer (GEAET)
Experiments on benchmark datasets demonstrate that GEAET achieves state-of-the-art empirical performance.
arXiv Detail & Related papers (2024-05-31T17:50:27Z) - Hi-GMAE: Hierarchical Graph Masked Autoencoders [90.30572554544385]
Hierarchical Graph Masked AutoEncoders (Hi-GMAE)
Hi-GMAE is a novel multi-scale GMAE framework designed to handle the hierarchical structures within graphs.
Our experiments on 15 graph datasets consistently demonstrate that Hi-GMAE outperforms 17 state-of-the-art self-supervised competitors.
arXiv Detail & Related papers (2024-05-17T09:08:37Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations.
The proposed graph Transformer encoder combines graph convolutions and self-attentions in a Transformer to model both local and global interactions.
We also propose a novel self-guided pre-training method for graph representation learning.
arXiv Detail & Related papers (2024-01-15T14:36:38Z) - Graph Transformer GANs for Graph-Constrained House Generation [223.739067413952]
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations.
The GTGAN learns effective graph node relations in an end-to-end fashion for the challenging graph-constrained house generation task.
arXiv Detail & Related papers (2023-03-14T20:35:45Z) - Self-supervised Consensus Representation Learning for Attributed Graph [15.729417511103602]
We introduce self-supervised learning mechanism to graph representation learning.
We propose a novel Self-supervised Consensus Representation Learning framework.
Our proposed SCRL method treats graph from two perspectives: topology graph and feature graph.
arXiv Detail & Related papers (2021-08-10T07:53:09Z) - Diversified Multiscale Graph Learning with Graph Self-Correction [55.43696999424127]
We propose a diversified multiscale graph learning model equipped with two core ingredients.
A graph self-correction (GSC) mechanism to generate informative embedded graphs, and a diversity boosting regularizer (DBR) to achieve a comprehensive characterization of the input graph.
Experiments on popular graph classification benchmarks show that the proposed GSC mechanism leads to significant improvements over state-of-the-art graph pooling methods.
arXiv Detail & Related papers (2021-03-17T16:22:24Z) - Graph InfoClust: Leveraging cluster-level node information for
unsupervised graph representation learning [12.592903558338444]
We propose a graph representation learning method called Graph InfoClust.
It seeks to additionally capture cluster-level information content.
This optimization leads the node representations to capture richer information and nodal interactions, which improves their quality.
arXiv Detail & Related papers (2020-09-15T09:33:20Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
Graph-based clustering plays an important role in the clustering area.
Recent studies about graph convolution neural networks have achieved impressive success on graph type data.
We propose a graph auto-encoder for general data clustering, which constructs the graph adaptively according to the generative perspective of graphs.
arXiv Detail & Related papers (2020-02-20T10:11:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.