Multi-Relation Graph-Kernel Strengthen Network for Graph-Level Clustering
- URL: http://arxiv.org/abs/2504.01605v1
- Date: Wed, 02 Apr 2025 11:17:15 GMT
- Title: Multi-Relation Graph-Kernel Strengthen Network for Graph-Level Clustering
- Authors: Renda Han, Guangzhen Yao, Wenxin Zhang, Yu Li, Wen Xin, Huajie Lei, Mengfei Li, Zeyu Zhang, Chengze Du, Yahe Tian,
- Abstract summary: We propose a novel Multi-Relation Graph- Kernel Strengthen Network for Graph-Level Clustering (MGSN)<n>MGSN constructs multi-relation graphs to capture diverse semantic relationships between nodes and graphs.<n>A relation-aware representation refinement strategy is designed, which adaptively aligns multi-relation information across views.
- Score: 10.67474681549171
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph-level clustering is a fundamental task of data mining, aiming at dividing unlabeled graphs into distinct groups. However, existing deep methods that are limited by pooling have difficulty extracting diverse and complex graph structure features, while traditional graph kernel methods rely on exhaustive substructure search, unable to adaptive handle multi-relational data. This limitation hampers producing robust and representative graph-level embeddings. To address this issue, we propose a novel Multi-Relation Graph-Kernel Strengthen Network for Graph-Level Clustering (MGSN), which integrates multi-relation modeling with graph kernel techniques to fully leverage their respective advantages. Specifically, MGSN constructs multi-relation graphs to capture diverse semantic relationships between nodes and graphs, which employ graph kernel methods to extract graph similarity features, enriching the representation space. Moreover, a relation-aware representation refinement strategy is designed, which adaptively aligns multi-relation information across views while enhancing graph-level features through a progressive fusion process. Extensive experiments on multiple benchmark datasets demonstrate the superiority of MGSN over state-of-the-art methods. The results highlight its ability to leverage multi-relation structures and graph kernel features, establishing a new paradigm for robust graph-level clustering.
Related papers
- Transforming Graphs for Enhanced Attribute Clustering: An Innovative
Graph Transformer-Based Method [8.989218350080844]
This study introduces an innovative method known as the Graph Transformer Auto-Encoder for Graph Clustering (GTAGC)
By melding the Graph Auto-Encoder with the Graph Transformer, GTAGC is adept at capturing global dependencies between nodes.
The architecture of GTAGC encompasses graph embedding, integration of the Graph Transformer within the autoencoder structure, and a clustering component.
arXiv Detail & Related papers (2023-06-20T06:04:03Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
We propose a novel graph clustering network called Embedding-Induced Graph Refinement Clustering Network (EGRC-Net)
EGRC-Net effectively utilizes the learned embedding to adaptively refine the initial graph and enhance the clustering performance.
Our proposed methods consistently outperform several state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-19T09:08:43Z) - High-order Multi-view Clustering for Generic Data [15.764819403555512]
Graph-based multi-view clustering has achieved better performance than most non-graph approaches.
We introduce an approach called high-order multi-view clustering (HMvC) to explore the topology structure information of generic data.
arXiv Detail & Related papers (2022-09-22T07:49:38Z) - Edge but not Least: Cross-View Graph Pooling [76.71497833616024]
This paper presents a cross-view graph pooling (Co-Pooling) method to better exploit crucial graph structure information.
Through cross-view interaction, edge-view pooling and node-view pooling seamlessly reinforce each other to learn more informative graph-level representations.
arXiv Detail & Related papers (2021-09-24T08:01:23Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Multiple Graph Learning for Scalable Multi-view Clustering [26.846642220480863]
We propose an efficient multiple graph learning model via a small number of anchor points and tensor Schatten p-norm minimization.
Specifically, we construct a hidden and tractable large graph by anchor graph for each view.
We develop an efficient algorithm, which scales linearly with the data size, to solve our proposed model.
arXiv Detail & Related papers (2021-06-29T13:10:56Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Diversified Multiscale Graph Learning with Graph Self-Correction [55.43696999424127]
We propose a diversified multiscale graph learning model equipped with two core ingredients.
A graph self-correction (GSC) mechanism to generate informative embedded graphs, and a diversity boosting regularizer (DBR) to achieve a comprehensive characterization of the input graph.
Experiments on popular graph classification benchmarks show that the proposed GSC mechanism leads to significant improvements over state-of-the-art graph pooling methods.
arXiv Detail & Related papers (2021-03-17T16:22:24Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
We propose a Graph Multiset Transformer (GMT) that captures the interaction between nodes according to their structural dependencies.
Our experimental results show that GMT significantly outperforms state-of-the-art graph pooling methods on graph classification benchmarks.
arXiv Detail & Related papers (2021-02-23T07:45:58Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.