FDINet: Protecting against DNN Model Extraction via Feature Distortion
Index
- URL: http://arxiv.org/abs/2306.11338v2
- Date: Thu, 22 Jun 2023 02:20:38 GMT
- Title: FDINet: Protecting against DNN Model Extraction via Feature Distortion
Index
- Authors: Hongwei Yao, Zheng Li, Haiqin Weng, Feng Xue, Kui Ren, and Zhan Qin
- Abstract summary: FDINET is a novel defense mechanism that leverages the feature distribution of deep neural network (DNN) models.
It exploits FDI similarity to identify colluding adversaries from distributed extraction attacks.
FDINET exhibits the capability to identify colluding adversaries with an accuracy exceeding 91%.
- Score: 31.094958502555503
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine Learning as a Service (MLaaS) platforms have gained popularity due to
their accessibility, cost-efficiency, scalability, and rapid development
capabilities. However, recent research has highlighted the vulnerability of
cloud-based models in MLaaS to model extraction attacks. In this paper, we
introduce FDINET, a novel defense mechanism that leverages the feature
distribution of deep neural network (DNN) models. Concretely, by analyzing the
feature distribution from the adversary's queries, we reveal that the feature
distribution of these queries deviates from that of the model's training set.
Based on this key observation, we propose Feature Distortion Index (FDI), a
metric designed to quantitatively measure the feature distribution deviation of
received queries. The proposed FDINET utilizes FDI to train a binary detector
and exploits FDI similarity to identify colluding adversaries from distributed
extraction attacks. We conduct extensive experiments to evaluate FDINET against
six state-of-the-art extraction attacks on four benchmark datasets and four
popular model architectures. Empirical results demonstrate the following
findings FDINET proves to be highly effective in detecting model extraction,
achieving a 100% detection accuracy on DFME and DaST. FDINET is highly
efficient, using just 50 queries to raise an extraction alarm with an average
confidence of 96.08% for GTSRB. FDINET exhibits the capability to identify
colluding adversaries with an accuracy exceeding 91%. Additionally, it
demonstrates the ability to detect two types of adaptive attacks.
Related papers
- Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - Lazy Layers to Make Fine-Tuned Diffusion Models More Traceable [70.77600345240867]
A novel arbitrary-in-arbitrary-out (AIAO) strategy makes watermarks resilient to fine-tuning-based removal.
Unlike the existing methods of designing a backdoor for the input/output space of diffusion models, in our method, we propose to embed the backdoor into the feature space of sampled subpaths.
Our empirical studies on the MS-COCO, AFHQ, LSUN, CUB-200, and DreamBooth datasets confirm the robustness of AIAO.
arXiv Detail & Related papers (2024-05-01T12:03:39Z) - Machine learning-based network intrusion detection for big and
imbalanced data using oversampling, stacking feature embedding and feature
extraction [6.374540518226326]
Intrusion Detection Systems (IDS) play a critical role in protecting interconnected networks by detecting malicious actors and activities.
This paper introduces a novel ML-based network intrusion detection model that uses Random Oversampling (RO) to address data imbalance and Stacking Feature Embedding (PCA) for dimension reduction.
Using the CIC-IDS 2017 dataset, DT, RF, and ET models reach 99.99% accuracy, while DT and RF models obtain 99.94% accuracy on CIC-IDS 2018 dataset.
arXiv Detail & Related papers (2024-01-22T05:49:41Z) - REB: Reducing Biases in Representation for Industrial Anomaly Detection [16.550844182346314]
We propose Reducing Biases (REB) in representation by considering the domain bias and building a self-supervised learning task for better domain adaption.
We also propose a local-density KNN (LDKNN) to reduce the local density bias in the feature space and obtain effective anomaly detection.
The proposed REB method achieves a promising result of 99.5% Im.AUROC on the widely used MVTec AD, with smaller backbone networks such as Vgg11 and Resnet18.
arXiv Detail & Related papers (2023-08-24T05:32:29Z) - TFDPM: Attack detection for cyber-physical systems with diffusion
probabilistic models [10.389972581904999]
We propose TFDPM, a general framework for attack detection tasks in CPSs.
It simultaneously extracts temporal pattern and feature pattern given the historical data.
The noise scheduling network increases the detection speed by three times.
arXiv Detail & Related papers (2021-12-20T13:13:29Z) - Localization Uncertainty-Based Attention for Object Detection [8.154943252001848]
We propose a more efficient uncertainty-aware dense detector (UADET) that predicts four-directional localization uncertainties via Gaussian modeling.
Experiments using the MS COCO benchmark show that our UADET consistently surpasses baseline FCOS, and that our best model, ResNext-64x4d-101-DCN, obtains a single model, single-scale AP of 48.3% on COCO test-dev.
arXiv Detail & Related papers (2021-08-25T04:32:39Z) - Robust Out-of-Distribution Detection on Deep Probabilistic Generative
Models [0.06372261626436676]
Out-of-distribution (OOD) detection is an important task in machine learning systems.
Deep probabilistic generative models facilitate OOD detection by estimating the likelihood of a data sample.
We propose a new detection metric that operates without outlier exposure.
arXiv Detail & Related papers (2021-06-15T06:36:10Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.