REB: Reducing Biases in Representation for Industrial Anomaly Detection
- URL: http://arxiv.org/abs/2308.12577v2
- Date: Fri, 17 May 2024 15:36:04 GMT
- Title: REB: Reducing Biases in Representation for Industrial Anomaly Detection
- Authors: Shuai Lyu, Dongmei Mo, Waikeung Wong,
- Abstract summary: We propose Reducing Biases (REB) in representation by considering the domain bias and building a self-supervised learning task for better domain adaption.
We also propose a local-density KNN (LDKNN) to reduce the local density bias in the feature space and obtain effective anomaly detection.
The proposed REB method achieves a promising result of 99.5% Im.AUROC on the widely used MVTec AD, with smaller backbone networks such as Vgg11 and Resnet18.
- Score: 16.550844182346314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing representation-based methods usually conduct industrial anomaly detection in two stages: obtain feature representations with a pre-trained model and perform distance measures for anomaly detection. Among them, K-nearest neighbor (KNN) retrieval-based anomaly detection methods show promising results. However, the features are not fully exploited as these methods ignore domain bias of pre-trained models and the difference of local density in feature space, which limits the detection performance. In this paper, we propose Reducing Biases (REB) in representation by considering the domain bias and building a self-supervised learning task for better domain adaption with a defect generation strategy (DefectMaker) that ensures a strong diversity in the synthetic defects. Additionally, we propose a local-density KNN (LDKNN) to reduce the local density bias in the feature space and obtain effective anomaly detection. The proposed REB method achieves a promising result of 99.5\% Im.AUROC on the widely used MVTec AD, with smaller backbone networks such as Vgg11 and Resnet18. The method also achieves an impressive 88.8\% Im.AUROC on the MVTec LOCO AD dataset and a remarkable 96.0\% on the BTAD dataset, outperforming other representation-based approaches. These results indicate the effectiveness and efficiency of REB for practical industrial applications. Code:https://github.com/ShuaiLYU/REB.
Related papers
- YOLO-ELA: Efficient Local Attention Modeling for High-Performance Real-Time Insulator Defect Detection [0.0]
Existing detection methods for insulator defect identification from unmanned aerial vehicles struggle with complex background scenes and small objects.
This paper proposes a new attention-based foundation architecture, YOLO-ELA, to address this issue.
Experimental results on high-resolution UAV images show that our method achieved a state-of-the-art performance of 96.9% mAP0.5 and a real-time detection speed of 74.63 frames per second.
arXiv Detail & Related papers (2024-10-15T16:00:01Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Produce Once, Utilize Twice for Anomaly Detection [6.501323305130114]
We derive POUTA, which improves both the accuracy and efficiency by reusing the discriminant information potential in the reconstructive network.
POUTA achieves better performance than the state-of-the-art few-shot anomaly detection methods without any special design.
arXiv Detail & Related papers (2023-12-20T10:49:49Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Spot The Odd One Out: Regularized Complete Cycle Consistent Anomaly Detector GAN [4.5123329001179275]
This study presents an adversarial method for anomaly detection in real-world applications, leveraging the power of generative adversarial neural networks (GANs)
Previous methods suffer from the high variance between class-wise accuracy which leads to not being applicable for all types of anomalies.
The proposed method named RCALAD tries to solve this problem by introducing a novel discriminator to the structure, which results in a more efficient training process.
arXiv Detail & Related papers (2023-04-16T13:05:39Z) - PNI : Industrial Anomaly Detection using Position and Neighborhood
Information [6.316693022958221]
We propose a new algorithm, textbfPNI, which estimates the normal distribution using conditional probability given neighborhood features.
We conducted experiments on the MVTec AD benchmark dataset and achieved state-of-the-art performance, with textbf99.56% and textbf98.98% AUROC scores in anomaly detection and localization.
arXiv Detail & Related papers (2022-11-22T23:45:27Z) - Diffusion Denoising Process for Perceptron Bias in Out-of-distribution
Detection [67.49587673594276]
We introduce a new perceptron bias assumption that suggests discriminator models are more sensitive to certain features of the input, leading to the overconfidence problem.
We demonstrate that the diffusion denoising process (DDP) of DMs serves as a novel form of asymmetric, which is well-suited to enhance the input and mitigate the overconfidence problem.
Our experiments on CIFAR10, CIFAR100, and ImageNet show that our method outperforms SOTA approaches.
arXiv Detail & Related papers (2022-11-21T08:45:08Z) - Regressive Domain Adaptation for Unsupervised Keypoint Detection [67.2950306888855]
Domain adaptation (DA) aims at transferring knowledge from a labeled source domain to an unlabeled target domain.
We present a method of regressive domain adaptation (RegDA) for unsupervised keypoint detection.
Our method brings large improvement by 8% to 11% in terms of PCK on different datasets.
arXiv Detail & Related papers (2021-03-10T16:45:22Z) - PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and
Localization [64.39761523935613]
We present a new framework for Patch Distribution Modeling, PaDiM, to concurrently detect and localize anomalies in images.
PaDiM makes use of a pretrained convolutional neural network (CNN) for patch embedding.
It also exploits correlations between the different semantic levels of CNN to better localize anomalies.
arXiv Detail & Related papers (2020-11-17T17:29:18Z) - Collaborative Training between Region Proposal Localization and
Classification for Domain Adaptive Object Detection [121.28769542994664]
Domain adaptation for object detection tries to adapt the detector from labeled datasets to unlabeled ones for better performance.
In this paper, we are the first to reveal that the region proposal network (RPN) and region proposal classifier(RPC) demonstrate significantly different transferability when facing large domain gap.
arXiv Detail & Related papers (2020-09-17T07:39:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.