論文の概要: Contrastive Disentangled Learning on Graph for Node Classification
- arxiv url: http://arxiv.org/abs/2306.11344v1
- Date: Tue, 20 Jun 2023 07:25:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-21 15:10:57.965913
- Title: Contrastive Disentangled Learning on Graph for Node Classification
- Title(参考訳): ノード分類のためのグラフ上のコントラストディスタングル学習
- Authors: Xiaojuan Zhang and Jun Fu and Shuang Li
- Abstract要約: 本稿では,グラフ上の非絡み合い学習のための新しいフレームワークを提案し,非絡み合いグラフエンコーダと2つの慎重に構築された自己超越信号を用いた。
具体的には、下層のセマンティック情報に対応する様々な潜伏要因を識別するために、フレームワークを強制する非絡み合いグラフエンコーダを導入する。
ラベルに大きく依存する2つの自己超越信号,すなわちノード特異性とチャネル独立性を克服し,ラベル付きデータを必要としない情報的知識を抽出する。
- 参考スコア(独自算出の注目度): 11.678287036601564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contrastive learning methods have attracted considerable attention due to
their remarkable success in analyzing graph-structured data. Inspired by the
success of contrastive learning, we propose a novel framework for contrastive
disentangled learning on graphs, employing a disentangled graph encoder and two
carefully crafted self-supervision signals. Specifically, we introduce a
disentangled graph encoder to enforce the framework to distinguish various
latent factors corresponding to underlying semantic information and learn the
disentangled node embeddings. Moreover, to overcome the heavy reliance on
labels, we design two self-supervision signals, namely node specificity and
channel independence, which capture informative knowledge without the need for
labeled data, thereby guiding the automatic disentanglement of nodes. Finally,
we perform node classification tasks on three citation networks by using the
disentangled node embeddings, and the relevant analysis is provided.
Experimental results validate the effectiveness of the proposed framework
compared with various baselines.
- Abstract(参考訳): グラフ構造化データの解析において顕著な成功を収めたコントラスト学習手法が注目されている。
コントラスト学習の成功にインスパイアされた,グラフ上の非絡み合い学習のための新しいフレームワークを提案し,非絡み合いグラフエンコーダと2つの慎重に構築された自己超越信号を用いた。
具体的には, 基礎となる意味情報に対応する様々な潜在要因を識別し, 不連続ノード埋め込みを学習するために, フレームワークを強制するグラフエンコーダを導入する。
さらに,ラベルに大きく依存する2つの自己超越信号,すなわちノード特異性とチャネル独立性を克服し,ラベル付きデータを必要とせずに情報的知識を収集し,ノードの自動切り離しを誘導する。
最後に,3つの引用ネットワーク上のノード分類タスクを非交叉ノード埋め込みを用いて実行し,関連する解析を行う。
提案手法の有効性を各種ベースラインと比較し実験により検証した。
関連論文リスト
- CONVERT:Contrastive Graph Clustering with Reliable Augmentation [110.46658439733106]
信頼性オーグメンテーション(CONVERT)を用いたContrastiVe Graph ClustEringネットワークを提案する。
本手法では,データ拡張を可逆的パーターブ・リカバリネットワークにより処理する。
セマンティクスの信頼性をさらに保証するために、ネットワークを制約する新たなセマンティクス損失が提示される。
論文 参考訳(メタデータ) (2023-08-17T13:07:09Z) - Coarse-to-Fine Contrastive Learning on Graphs [38.41992365090377]
ノード表現を自己管理的に学習するために、さまざまなグラフ拡張戦略が採用されている。
我々は,異なるノード間の識別情報を確実に維持するために,自己評価パラダイムを導入する。
各種ベンチマークデータセットの実験結果から,提案アルゴリズムの有効性を検証した。
論文 参考訳(メタデータ) (2022-12-13T08:17:20Z) - Supervised Contrastive Learning with Structure Inference for Graph
Classification [5.276232626689567]
グラフ分類のための教師付きコントラスト学習と構造推論に基づくグラフニューラルネットワークを提案する。
ラベル情報の統合により、1-vs-manyのコントラスト学習を多-vs-many設定に拡張することができる。
実験の結果,最近の最先端手法と比較して提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-03-15T07:18:46Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Noise-robust Graph Learning by Estimating and Leveraging Pairwise
Interactions [123.07967420310796]
本稿では,グラフ上のノイズノード分類のためのペアワイズフレームワークを提案することにより,そのギャップを埋める。
PI-GNNは、ノイズの多いノードクラスラベルからのポイントワイズ学習に加えて、PIを一次学習プロキシとして依存している。
提案するフレームワークPI-GNNは,(1)PIラベルを適応的に推定する信頼度を考慮したPI推定モデル,(2)PIラベルを推定する疎結合トレーニング手法の2つの新しい構成要素に寄与する。
論文 参考訳(メタデータ) (2021-06-14T14:23:08Z) - Self-Supervised Graph Learning with Proximity-based Views and Channel
Contrast [4.761137180081091]
グラフニューラルネットワーク(GNN)は、近傍の集約をコアコンポーネントとして使用し、近接ノード間の機能を滑らかにする。
この問題に対処するため、我々は2つのグラフビューでグラフを強化し、ノードは最も類似した特徴や局所構造を持つものと直接リンクする。
生成したビューと元のグラフをまたいだ表現の一致を最大化する手法を提案する。
論文 参考訳(メタデータ) (2021-06-07T15:38:36Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
本稿では,グラフ構造化データを用いた学習において,情報難読化による機密属性保護の問題について検討する。
本稿では,全変動量とワッサーシュタイン距離を交互に学習することで,事前決定された機密属性を局所的にフィルタリングするフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-28T17:55:04Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
グラフベースのSemi-Supervised Learning (SSL)は、少数のラベル付きデータのラベルをグラフ経由で残りの巨大なラベル付きデータに転送することを目的としている。
本稿では,データ類似性とグラフ構造を両立させ,監視信号の強化を図るため,新しいGCNベースのSSLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-15T13:59:28Z) - GraphCL: Contrastive Self-Supervised Learning of Graph Representations [20.439666392958284]
本稿では,ノード表現を自己教師型で学習するための一般的なフレームワークであるGraph Contrastive Learning (GraphCL)を提案する。
グラフニューラルネットワークを用いて、同じノードの2つの表現を生成し、対照的な学習損失を利用して両者の一致を最大化する。
帰納的学習と帰納的学習の両方において,本手法がノード分類ベンチマークにおいて教師なし学習の最先端性を大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2020-07-15T22:36:53Z) - Deep Graph Contrastive Representation Learning [23.37786673825192]
ノードレベルでの対照的な目的を生かして,教師なしグラフ表現学習のための新しいフレームワークを提案する。
具体的には,この2つのビューにおけるノード表現の一致を最大化することにより,ノード表現の破損と学習によって2つのグラフビューを生成する。
我々は,様々な実世界のデータセットを用いて,帰納的および帰納的学習タスクの実証実験を行った。
論文 参考訳(メタデータ) (2020-06-07T11:50:45Z) - Graph Inference Learning for Semi-supervised Classification [50.55765399527556]
半教師付きノード分類の性能を高めるためのグラフ推論学習フレームワークを提案する。
推論過程の学習には,トレーニングノードから検証ノードへの構造関係のメタ最適化を導入する。
4つのベンチマークデータセットの総合的な評価は、最先端の手法と比較して提案したGILの優位性を示している。
論文 参考訳(メタデータ) (2020-01-17T02:52:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。