UUKG: Unified Urban Knowledge Graph Dataset for Urban Spatiotemporal
Prediction
- URL: http://arxiv.org/abs/2306.11443v2
- Date: Sun, 22 Oct 2023 04:22:18 GMT
- Title: UUKG: Unified Urban Knowledge Graph Dataset for Urban Spatiotemporal
Prediction
- Authors: Yansong Ning, Hao Liu, Hao Wang, Zhenyu Zeng and Hui Xiong
- Abstract summary: This paper presents UUKG, the unified urban knowledge graph dataset for knowledge-enhanced urbantemporal predictions.
We first construct UrbanKGs consisting of millions of triplets for two metropolises by connecting heterogeneous urban entities.
We conduct qualitative and quantitative analysis on constructed UrbanKGs and uncover diverse high-order structural patterns.
- Score: 23.842678225828184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate Urban SpatioTemporal Prediction (USTP) is of great importance to the
development and operation of the smart city. As an emerging building block,
multi-sourced urban data are usually integrated as urban knowledge graphs
(UrbanKGs) to provide critical knowledge for urban spatiotemporal prediction
models. However, existing UrbanKGs are often tailored for specific downstream
prediction tasks and are not publicly available, which limits the potential
advancement. This paper presents UUKG, the unified urban knowledge graph
dataset for knowledge-enhanced urban spatiotemporal predictions. Specifically,
we first construct UrbanKGs consisting of millions of triplets for two
metropolises by connecting heterogeneous urban entities such as administrative
boroughs, POIs, and road segments. Moreover, we conduct qualitative and
quantitative analysis on constructed UrbanKGs and uncover diverse high-order
structural patterns, such as hierarchies and cycles, that can be leveraged to
benefit downstream USTP tasks. To validate and facilitate the use of UrbanKGs,
we implement and evaluate 15 KG embedding methods on the KG completion task and
integrate the learned KG embeddings into 9 spatiotemporal models for five
different USTP tasks. The extensive experimental results not only provide
benchmarks of knowledge-enhanced USTP models under different task settings but
also highlight the potential of state-of-the-art high-order structure-aware
UrbanKG embedding methods. We hope the proposed UUKG fosters research on urban
knowledge graphs and broad smart city applications. The dataset and source code
are available at https://github.com/usail-hkust/UUKG/.
Related papers
- COHO: Context-Sensitive City-Scale Hierarchical Urban Layout Generation [1.5745692520785073]
We introduce a novel graph-based masked autoencoder (GMAE) for city-scale urban layout generation.
The method encodes attributed buildings, city blocks, communities and cities into a unified graph structure.
Our approach achieves good realism, semantic consistency, and correctness across the heterogeneous urban styles in 330 US cities.
arXiv Detail & Related papers (2024-07-16T00:49:53Z) - UrbanKGent: A Unified Large Language Model Agent Framework for Urban Knowledge Graph Construction [4.829677240798159]
Urban knowledge graph construction (UrbanKGC) still heavily relies on manual effort, hindering its potential advancement.
This paper presents UrbanKGent, a unified large language model agent framework, for urban knowledge graph construction.
arXiv Detail & Related papers (2024-02-10T01:50:19Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
This work addresses challenges in accessing and utilizing diverse urban spatial-temporal datasets.
We introduceatomic files, a unified storage format designed for urban spatial-temporal big data, and validate its effectiveness on 40 diverse datasets.
We conduct extensive experiments using diverse models and datasets, establishing a performance leaderboard and identifying promising research directions.
arXiv Detail & Related papers (2023-08-24T16:20:00Z) - UrbanBIS: a Large-scale Benchmark for Fine-grained Urban Building
Instance Segmentation [50.52615875873055]
UrbanBIS comprises six real urban scenes, with 2.5 billion points, covering a vast area of 10.78 square kilometers.
UrbanBIS provides semantic-level annotations on a rich set of urban objects, including buildings, vehicles, vegetation, roads, and bridges.
UrbanBIS is the first 3D dataset that introduces fine-grained building sub-categories.
arXiv Detail & Related papers (2023-05-04T08:01:38Z) - A Contextual Master-Slave Framework on Urban Region Graph for Urban
Village Detection [68.84486900183853]
We build an urban region graph (URG) to model the urban area in a hierarchically structured way.
Then, we design a novel contextual master-slave framework to effectively detect the urban village from the URG.
The proposed framework can learn to balance the generality and specificity for UV detection in an urban area.
arXiv Detail & Related papers (2022-11-26T18:17:39Z) - Search to Pass Messages for Temporal Knowledge Graph Completion [97.40256786473516]
We propose to use neural architecture search (NAS) to design data-specific message passing architecture for temporal knowledge graphs (TKGs) completion.
In particular, we develop a generalized framework to explore topological and temporal information in TKGs.
We adopt a search algorithm, which trains a supernet structure by sampling single path for efficient search with less cost.
arXiv Detail & Related papers (2022-10-30T04:05:06Z) - Automated Urban Planning aware Spatial Hierarchies and Human
Instructions [33.06221365923015]
We propose a novel, deep, human-instructed urban planner based on generative adversarial networks (GANs)
GANs build urban functional zones based on information from human instructions and surrounding contexts.
We conduct extensive experiments to validate the efficacy of our work.
arXiv Detail & Related papers (2022-09-26T20:37:02Z) - Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge
Transfer [58.6106391721944]
Cross-city knowledge has shown its promise, where the model learned from data-sufficient cities is leveraged to benefit the learning process of data-scarce cities.
We propose a model-agnostic few-shot learning framework for S-temporal graph called ST-GFSL.
We conduct comprehensive experiments on four traffic speed prediction benchmarks and the results demonstrate the effectiveness of ST-GFSL compared with state-of-the-art methods.
arXiv Detail & Related papers (2022-05-27T12:46:52Z) - Effective Urban Region Representation Learning Using Heterogeneous Urban
Graph Attention Network (HUGAT) [0.0]
We propose heterogeneous urban graph attention network (HUGAT) for learning the representations of urban regions.
In our experiments on NYC data, HUGAT outperformed all the state-of-the-art models.
arXiv Detail & Related papers (2022-02-18T04:59:20Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
We present a method for numerical taxonomy of urban form derived from biological systematics.
We derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form.
After framing and presenting the method, we test it on two cities - Prague and Amsterdam.
arXiv Detail & Related papers (2021-04-30T12:47:52Z) - City limits in the age of smartphones and urban scaling [0.0]
Urban planning still lacks appropriate standards to define city boundaries across urban systems.
ICT provide the potential to portray more accurate descriptions of the urban systems.
We apply computational techniques over a large volume of mobile phone records to define urban boundaries.
arXiv Detail & Related papers (2020-05-06T17:31:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.