A Passivity-Based Method for Accelerated Convex Optimisation
- URL: http://arxiv.org/abs/2306.11474v2
- Date: Fri, 13 Sep 2024 12:17:14 GMT
- Title: A Passivity-Based Method for Accelerated Convex Optimisation
- Authors: Namhoon Cho, Hyo-Sang Shin,
- Abstract summary: This study presents a constructive methodology for designing accelerated convex optimisation algorithms in continuous-time domain.
The two key enablers are the classical concept of passivity in control theory and the time-dependent change of variables.
- Score: 0.8747606955991705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study presents a constructive methodology for designing accelerated convex optimisation algorithms in continuous-time domain. The two key enablers are the classical concept of passivity in control theory and the time-dependent change of variables that maps the output of the internal dynamic system to the optimisation variables. The Lyapunov function associated with the optimisation dynamics is obtained as a natural consequence of specifying the internal dynamics that drives the state evolution as a passive linear time-invariant system. The passivity-based methodology provides a general framework that has the flexibility to generate convex optimisation algorithms with the guarantee of different convergence rate bounds on the objective function value. The same principle applies to the design of online parameter update algorithms for adaptive control by re-defining the output of internal dynamics to allow for the feedback interconnection with tracking error dynamics.
Related papers
- Tensor-Valued Time and Inference Path Optimization in Differential Equation-Based Generative Modeling [16.874769609089764]
This work introduces, for the first time, a tensor-valued time that expands the conventional scalar-valued time into multiple dimensions.
We also propose a novel path optimization problem designed to adaptively determine multidimensional inference trajectories.
arXiv Detail & Related papers (2024-04-22T13:20:01Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Neural ODEs as Feedback Policies for Nonlinear Optimal Control [1.8514606155611764]
We use Neural ordinary differential equations (Neural ODEs) to model continuous time dynamics as differential equations parametrized with neural networks.
We propose the use of a neural control policy posed as a Neural ODE to solve general nonlinear optimal control problems.
arXiv Detail & Related papers (2022-10-20T13:19:26Z) - Adaptive Online Optimization with Predictions: Static and Dynamic
Environments [5.553963083111226]
We propose new step-size rules and OCO algorithms that exploit gradient predictions, function predictions and dynamics.
The proposed algorithms enjoy static and dynamic regret bounds in terms of the dynamics of the reference action sequence.
We present results for both convex and strongly convex costs.
arXiv Detail & Related papers (2022-05-01T11:03:33Z) - Optimisation of Structured Neural Controller Based on Continuous-Time
Policy Gradient [2.297079626504224]
This study presents a policy optimisation framework for structured nonlinear control of continuous-time (deterministic) dynamic systems.
The proposed approach prescribes a structure for the controller based on relevant scientific knowledge.
Numerical experiments on aerospace applications illustrate the utility of the structured nonlinear controller optimisation framework.
arXiv Detail & Related papers (2022-01-17T08:06:19Z) - Breaking the Convergence Barrier: Optimization via Fixed-Time Convergent
Flows [4.817429789586127]
We introduce a Poly-based optimization framework for achieving acceleration, based on the notion of fixed-time stability dynamical systems.
We validate the accelerated convergence properties of the proposed schemes on a range of numerical examples against the state-of-the-art optimization algorithms.
arXiv Detail & Related papers (2021-12-02T16:04:40Z) - Robust Value Iteration for Continuous Control Tasks [99.00362538261972]
When transferring a control policy from simulation to a physical system, the policy needs to be robust to variations in the dynamics to perform well.
We present Robust Fitted Value Iteration, which uses dynamic programming to compute the optimal value function on the compact state domain.
We show that robust value is more robust compared to deep reinforcement learning algorithm and the non-robust version of the algorithm.
arXiv Detail & Related papers (2021-05-25T19:48:35Z) - Value Iteration in Continuous Actions, States and Time [99.00362538261972]
We propose a continuous fitted value iteration (cFVI) algorithm for continuous states and actions.
The optimal policy can be derived for non-linear control-affine dynamics.
Videos of the physical system are available at urlhttps://sites.google.com/view/value-iteration.
arXiv Detail & Related papers (2021-05-10T21:40:56Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z) - Optimization with Momentum: Dynamical, Control-Theoretic, and Symplectic
Perspectives [97.16266088683061]
The article rigorously establishes why symplectic discretization schemes are important for momentum-based optimization algorithms.
It provides a characterization of algorithms that exhibit accelerated convergence.
arXiv Detail & Related papers (2020-02-28T00:32:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.