Tensor-Valued Time and Inference Path Optimization in Differential Equation-Based Generative Modeling
- URL: http://arxiv.org/abs/2404.14161v2
- Date: Sat, 25 May 2024 08:10:27 GMT
- Title: Tensor-Valued Time and Inference Path Optimization in Differential Equation-Based Generative Modeling
- Authors: Dohoon Lee, Kyogu Lee,
- Abstract summary: This work introduces, for the first time, a tensor-valued time that expands the conventional scalar-valued time into multiple dimensions.
We also propose a novel path optimization problem designed to adaptively determine multidimensional inference trajectories.
- Score: 16.874769609089764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of generative modeling based on differential equations, conventional methods utilize scalar-valued time during both the training and inference phases. This work introduces, for the first time, a tensor-valued time that expands the conventional scalar-valued time into multiple dimensions. Additionally, we propose a novel path optimization problem designed to adaptively determine multidimensional inference trajectories using a predetermined differential equation solver and a fixed number of function evaluations. Our approach leverages the stochastic interpolant framework, simulation dynamics, and adversarial training to optimize the inference pathway. Notably, incorporating tensor-valued time during training improves some models' inference performance, even without path optimization. When the adaptive, multidimensional path derived from our optimization process is employed, further performance gains are achieved despite the fixed solver configurations. The introduction of tensor-valued time not only enhances the efficiency of models but also opens new avenues for exploration in training and inference methodologies, highlighting the potential of adaptive multidimensional paths.
Related papers
- Flows and Diffusions on the Neural Manifold [0.0]
Diffusion and flow-based generative models have achieved remarkable success in domains such as image synthesis, video generation, and natural language modeling.<n>We extend these advances to weight space learning by leveraging recent techniques to incorporate structural priors derived from optimization dynamics.
arXiv Detail & Related papers (2025-07-14T02:26:06Z) - Divergence Minimization Preference Optimization for Diffusion Model Alignment [58.651951388346525]
Divergence Minimization Preference Optimization (DMPO) is a principled method for aligning diffusion models by minimizing reverse KL divergence.<n>Our results show that diffusion models fine-tuned with DMPO can consistently outperform or match existing techniques.<n>DMPO unlocks a robust and elegant pathway for preference alignment, bridging principled theory with practical performance in diffusion models.
arXiv Detail & Related papers (2025-07-10T07:57:30Z) - Amortized variational transdimensional inference [8.890385058609867]
CoSMIC is an extension to neural autoregressive conditional normalizing flow architectures.<n>We propose a combined variational transdimensional inference (VTI) approach to training CoSMIC flows.
arXiv Detail & Related papers (2025-06-05T08:33:07Z) - Preference-Guided Diffusion for Multi-Objective Offline Optimization [64.08326521234228]
We propose a preference-guided diffusion model for offline multi-objective optimization.<n>Our guidance is a preference model trained to predict the probability that one design dominates another.<n>Our results highlight the effectiveness of classifier-guided diffusion models in generating diverse and high-quality solutions.
arXiv Detail & Related papers (2025-03-21T16:49:38Z) - Training Neural ODEs Using Fully Discretized Simultaneous Optimization [2.290491821371513]
Training Neural Ordinary Differential Equations (Neural ODEs) requires solving differential equations at each epoch, leading to high computational costs.
In particular, we employ a collocation-based, fully discretized formulation and use IPOPT-a solver for large-scale nonlinear optimization.
Our results show significant potential for (collocation-based) simultaneous Neural ODE training pipelines.
arXiv Detail & Related papers (2025-02-21T18:10:26Z) - Variational Schrödinger Diffusion Models [14.480273869571468]
Schr"odinger bridge (SB) has emerged as the go-to method for optimizing transportation plans in diffusion models.<n>We leverage variational inference to linearize the forward score functions (variational scores) of SB.<n>We propose the variational Schr"odinger diffusion model (VSDM), where the forward process is a multivariate diffusion and the variational scores are adaptively optimized for efficient transport.
arXiv Detail & Related papers (2024-05-08T04:01:40Z) - Diffusion Model for Data-Driven Black-Box Optimization [54.25693582870226]
We focus on diffusion models, a powerful generative AI technology, and investigate their potential for black-box optimization.
We study two practical types of labels: 1) noisy measurements of a real-valued reward function and 2) human preference based on pairwise comparisons.
Our proposed method reformulates the design optimization problem into a conditional sampling problem, which allows us to leverage the power of diffusion models.
arXiv Detail & Related papers (2024-03-20T00:41:12Z) - Invertible Solution of Neural Differential Equations for Analysis of
Irregularly-Sampled Time Series [4.14360329494344]
We propose an invertible solution of Neural Differential Equations (NDE)-based method to handle the complexities of irregular and incomplete time series data.
Our method suggests the variation of Neural Controlled Differential Equations (Neural CDEs) with Neural Flow, which ensures invertibility while maintaining a lower computational burden.
At the core of our approach is an enhanced dual latent states architecture, carefully designed for high precision across various time series tasks.
arXiv Detail & Related papers (2024-01-10T07:51:02Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
We show that Guided Flows significantly improves the sample quality in conditional image generation and zero-shot text synthesis-to-speech.
Notably, we are first to apply flow models for plan generation in the offline reinforcement learning setting ax speedup in compared to diffusion models.
arXiv Detail & Related papers (2023-11-22T15:07:59Z) - Neural Dynamical Operator: Continuous Spatial-Temporal Model with Gradient-Based and Derivative-Free Optimization Methods [0.0]
We present a data-driven modeling framework called neural dynamical operator that is continuous in both space and time.
A key feature of the neural dynamical operator is the resolution-invariance with respect to both spatial and temporal discretizations.
We show that the proposed model can better predict long-term statistics via the hybrid optimization scheme.
arXiv Detail & Related papers (2023-11-20T14:31:18Z) - Aligning Optimization Trajectories with Diffusion Models for Constrained
Design Generation [17.164961143132473]
We introduce a learning framework that demonstrates the efficacy of aligning the sampling trajectory of diffusion models with the optimization trajectory derived from traditional physics-based methods.
Our method allows for generating feasible and high-performance designs in as few as two steps without the need for expensive preprocessing, external surrogate models, or additional labeled data.
Our results demonstrate that TA outperforms state-of-the-art deep generative models on in-distribution configurations and halves the inference computational cost.
arXiv Detail & Related papers (2023-05-29T09:16:07Z) - Asynchronous Multi-Model Dynamic Federated Learning over Wireless
Networks: Theory, Modeling, and Optimization [20.741776617129208]
Federated learning (FL) has emerged as a key technique for distributed machine learning (ML)
We first formulate rectangular scheduling steps and functions to capture the impact of system parameters on learning performance.
Our analysis sheds light on the joint impact of device training variables and asynchronous scheduling decisions.
arXiv Detail & Related papers (2023-05-22T21:39:38Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
We present a novel method that combines a hyper-network solver with a Fourier Neural Operator architecture.
We test our method on various time evolution PDEs, including nonlinear fluid flows in one, two, and three spatial dimensions.
The results show that the new method improves the learning accuracy at the time point of supervision point, and is able to interpolate and the solutions to any intermediate time.
arXiv Detail & Related papers (2022-07-28T19:59:14Z) - A theoretical and empirical study of new adaptive algorithms with
additional momentum steps and shifted updates for stochastic non-convex
optimization [0.0]
It is thought that adaptive optimization algorithms represent the key pillar behind the of the Learning field.
In this paper we introduce adaptive momentum techniques for different non-smooth objective problems.
arXiv Detail & Related papers (2021-10-16T09:47:57Z) - Second-Order Neural ODE Optimizer [11.92713188431164]
We show that a specific continuous-time OC methodology, called Differential Programming, can be adopted to derive backward ODEs for higher-order derivatives at the same O(1) memory cost.
The resulting method converges much faster than first-order baselines in wall-clock time.
Our framework also enables direct architecture optimization, such as the integration time of Neural ODEs, with second-order feedback policies.
arXiv Detail & Related papers (2021-09-29T02:58:18Z) - Optimization on manifolds: A symplectic approach [127.54402681305629]
We propose a dissipative extension of Dirac's theory of constrained Hamiltonian systems as a general framework for solving optimization problems.
Our class of (accelerated) algorithms are not only simple and efficient but also applicable to a broad range of contexts.
arXiv Detail & Related papers (2021-07-23T13:43:34Z) - A Discrete Variational Derivation of Accelerated Methods in Optimization [68.8204255655161]
We introduce variational which allow us to derive different methods for optimization.
We derive two families of optimization methods in one-to-one correspondence.
The preservation of symplecticity of autonomous systems occurs here solely on the fibers.
arXiv Detail & Related papers (2021-06-04T20:21:53Z) - DiffPD: Differentiable Projective Dynamics with Contact [65.88720481593118]
We present DiffPD, an efficient differentiable soft-body simulator with implicit time integration.
We evaluate the performance of DiffPD and observe a speedup of 4-19 times compared to the standard Newton's method in various applications.
arXiv Detail & Related papers (2021-01-15T00:13:33Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z) - Adaptive Sampling of Pareto Frontiers with Binary Constraints Using
Regression and Classification [0.0]
We present a novel adaptive optimization algorithm for black-box multi-objective optimization problems with binary constraints.
Our method is based on probabilistic regression and classification models, which act as a surrogate for the optimization goals.
We also present a novel ellipsoid truncation method to speed up the expected hypervolume calculation.
arXiv Detail & Related papers (2020-08-27T09:15:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.