論文の概要: A Responsive Framework for Research Portals Data using Semantic Web
Technology
- arxiv url: http://arxiv.org/abs/2306.11642v1
- Date: Tue, 20 Jun 2023 16:12:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 19:14:51.224850
- Title: A Responsive Framework for Research Portals Data using Semantic Web
Technology
- Title(参考訳): セマンティックWeb技術を用いた研究ポータルデータの応答型フレームワーク
- Authors: Muhammad Zohaib
- Abstract要約: 本研究の目的は、研究ポータルデータのセマンティックな組織化のためのフレームワークを設計することでこの問題に対処することである。
このフレームワークは、Microsoft AcademicとIEEE Xploreという2つの特定の研究ポータルから情報を抽出することに焦点を当てている。
- 参考スコア(独自算出の注目度): 0.6798775532273751
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the amount of data on the World Wide Web continues to grow exponentially,
access to semantically structured information remains limited. The Semantic Web
has emerged as a solution to enhance the machine-readability of data, making it
significantly more accessible and interpretable. Various techniques, such as
web scraping and mapping, have been employed by different websites to provide
semantic access. Web scraping involves the extraction of valuable information
from diverse data sources, such as the World Wide Web, utilizing powerful
string manipulation operations.In the research field, researchers face the
challenge of collecting relevant data from multiple sources, which requires
substantial time and effort. This research aims to address this issue by
designing a framework for the semantic organization of research portal data.
The framework focuses on the extraction of information from two specific
research portals, namely Microsoft Academic and IEEE Xplore. Its primary
objective is to gather diverse research-related data from these targeted
sources.By implementing this framework, researchers can streamline the process
of collecting valuable information for their work, saving time and effort. The
semantic organization of research portal data offers enhanced accessibility and
interpretability, facilitating more effective and efficient knowledge
discovery. This research contributes to the advancement of research data
management and promotes the utilization of semantic web technologies in the
academic community.
- Abstract(参考訳): world wide webのデータ量が指数関数的に増加するにつれ、意味論的に構造化された情報へのアクセスは限られている。
semantic webは、データの機械可読性を高めるソリューションとして登場し、よりアクセスしやすく、解釈可能にしました。
ウェブスクレイピングやマッピングといった様々な手法が、セマンティックアクセスを提供するために様々なウェブサイトで採用されている。
Webスクレイピングは、強力な文字列操作操作を利用するWorld Wide Webなどの多様なデータソースから貴重な情報を抽出することを含み、研究者は、複数のソースから関連するデータを収集することの難しさに直面している。
本研究は,研究ポータルデータのセマンティックな組織化のためのフレームワークを設計することで,この問題に対処することを目的とする。
このフレームワークは、microsoft academicとieee xploreという2つの特定の研究ポータルからの情報抽出に焦点を当てている。
主な目的は、これらの対象ソースから多様な研究データを収集することであり、このフレームワークを実装することで、研究者は、作業に有用な情報を収集し、時間と労力を節約できる。
研究ポータルデータのセマンティックな組織は、アクセシビリティと解釈可能性を高め、より効率的で効率的な知識発見を促進する。
本研究は,研究データ管理の進歩に寄与し,学術コミュニティにおけるセマンティックウェブ技術の活用を促進する。
関連論文リスト
- Web Scraping for Research: Legal, Ethical, Institutional, and Scientific Considerations [11.851771490297693]
本稿では,アメリカの研究者を対象とした社会科学研究におけるWebスクレイピングの包括的枠組みを提案する。
我々は、研究者がスクラップを通じてデータにアクセスし、収集し、保存し、共有する方法に影響を及ぼす現在の規制環境の概要を述べる。
次に、科学的に合法的で倫理的な方法でスクレーピングを行うための推奨事項を研究者に提供する。
論文 参考訳(メタデータ) (2024-10-30T20:20:44Z) - Data-Centric AI in the Age of Large Language Models [51.20451986068925]
本稿では,大規模言語モデル(LLM)に着目した,AI研究におけるデータ中心の視点を提案する。
本研究では,LLMの発達段階(事前学習や微調整など)や推論段階(文脈内学習など)において,データが有効であることを示す。
データを中心とした4つのシナリオを特定し、データ中心のベンチマークとデータキュレーション、データ属性、知識伝達、推論コンテキスト化をカバーします。
論文 参考訳(メタデータ) (2024-06-20T16:34:07Z) - MS MARCO Web Search: a Large-scale Information-rich Web Dataset with Millions of Real Click Labels [95.48844474720798]
我々は,MS MARCO Web Searchを紹介した。
このデータセットは現実世界のWebドキュメントとクエリ分布を模倣する。
MS MARCO Web Searchは3つのウェブ検索課題を伴う検索ベンチマークを提供する。
論文 参考訳(メタデータ) (2024-05-13T07:46:44Z) - The Web Can Be Your Oyster for Improving Large Language Models [98.72358969495835]
大規模言語モデル(LLM)は、大量の世界の知識を符号化する。
我々はLLMを検索エンジンを用いて大規模ウェブで拡張することを検討する。
ウェブ上に拡張されたLLM UNIWEBを提案する。これは16の知識集約的なタスクに対して、統一されたテキスト・テキスト・フォーマットで訓練される。
論文 参考訳(メタデータ) (2023-05-18T14:20:32Z) - Assessing Scientific Contributions in Data Sharing Spaces [64.16762375635842]
本稿では、研究者の科学的貢献を測定するブロックチェーンベースのメトリクスであるSCIENCE-indexを紹介する。
研究者にデータ共有のインセンティブを与えるため、SCIENCE-indexはデータ共有パラメータを含むように拡張されている。
本モデルは, 地理的に多様な研究者の出力分布とh-indexの分布を比較して評価する。
論文 参考訳(メタデータ) (2023-03-18T19:17:47Z) - Advanced Data Augmentation Approaches: A Comprehensive Survey and Future
directions [57.30984060215482]
データ拡張の背景、レビューされたデータ拡張技術の新しい包括的分類法、および各技術の強さと弱点(可能ならば)を提供する。
また、画像分類、オブジェクト検出、セマンティックセグメンテーションなどの3つの一般的なコンピュータビジョンタスクに対して、データ拡張効果の総合的な結果を提供する。
論文 参考訳(メタデータ) (2023-01-07T11:37:32Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
我々は,データ拡張アルゴリズムの適用分野,使用するアルゴリズムの種類,重要な研究動向,時間経過に伴う研究の進展,およびデータ拡張文学における研究ギャップを同定する。
我々は、読者がデータ拡張の可能性を理解し、将来の研究方向を特定し、データ拡張研究の中で質問を開くことを期待する。
論文 参考訳(メタデータ) (2022-07-18T11:38:32Z) - Knowledge Graph Induction enabling Recommending and Trend Analysis: A
Corporate Research Community Use Case [11.907821975089064]
本稿では,企業研究コミュニティであるIBM ResearchがセマンティックWeb技術を用いて,統一知識グラフを創出する事例を紹介する。
誘導された知識を活用するための共通パターンのセットを特定し、それらをAPIとして公開する。
これらのパターンは、最も価値のあるユースケースや、緩和すべきユーザの痛点を特定するユーザ調査から生まれました。
論文 参考訳(メタデータ) (2022-07-11T20:51:28Z) - A Crawler Architecture for Harvesting the Clear, Social, and Dark Web
for IoT-Related Cyber-Threat Intelligence [1.1661238776379117]
クリアでソーシャルでダークなWebは最近、貴重なサイバーセキュリティ情報の豊富な情報源として特定されている。
我々は、クリアウェブのセキュリティウェブサイト、ソーシャルウェブのセキュリティフォーラム、ダークウェブのハッカーフォーラム/マーケットプレースからデータを透過的に収集する新しいクローリングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-09-14T19:26:08Z) - Generating Knowledge Graphs by Employing Natural Language Processing and
Machine Learning Techniques within the Scholarly Domain [1.9004296236396943]
本稿では、自然言語処理と機械学習を利用して研究論文から実体や関係を抽出する新しいアーキテクチャを提案する。
本研究では,現在最先端の自然言語処理ツールとテキストマイニングツールを用いて,知識抽出の課題に取り組む。
セマンティックWebドメイン内の論文26,827件から抽出した109,105件のトリプルを含む科学知識グラフを作成した。
論文 参考訳(メタデータ) (2020-10-28T08:31:40Z) - Coupling semantic and statistical techniques for dynamically enriching
web ontologies [0.0]
本稿では,World Wide Web から大規模ジェネリックを動的に強化するための,自動結合型統計・セマンティックフレームワークを提案する。
このアプローチの利点は, (i) 背景知識の欠如による大規模セマンティック・パターンのダイナミック・エンリッチメントを提案し, このような知識の再利用を可能にすることである。
論文 参考訳(メタデータ) (2020-04-23T11:21:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。