Geometric Deep Learning for Structure-Based Drug Design: A Survey
- URL: http://arxiv.org/abs/2306.11768v6
- Date: Sat, 16 Nov 2024 02:51:56 GMT
- Title: Geometric Deep Learning for Structure-Based Drug Design: A Survey
- Authors: Zaixi Zhang, Jiaxian Yan, Yining Huang, Qi Liu, Enhong Chen, Mengdi Wang, Marinka Zitnik,
- Abstract summary: Structure-based drug design (SBDD) leverages the three-dimensional geometry of proteins to identify potential drug candidates.
Recent advancements in geometric deep learning, which effectively integrate and process 3D geometric data, have significantly propelled the field forward.
- Score: 83.87489798671155
- License:
- Abstract: Structure-based drug design (SBDD) leverages the three-dimensional geometry of proteins to identify potential drug candidates. Traditional approaches, rooted in physicochemical modeling and domain expertise, are often resource-intensive. Recent advancements in geometric deep learning, which effectively integrate and process 3D geometric data, alongside breakthroughs in accurate protein structure predictions from tools like AlphaFold, have significantly propelled the field forward. This paper systematically reviews the state-of-the-art in geometric deep learning for SBDD. We begin by outlining foundational tasks in SBDD, discussing prevalent 3D protein representations, and highlighting representative predictive and generative models. Next, we provide an in-depth review of key tasks, including binding site prediction, binding pose generation, de novo molecule generation, linker design, protein pocket generation, and binding affinity prediction. For each task, we present formal problem definitions, key methods, datasets, evaluation metrics, and performance benchmarks. Lastly, we explore current challenges and future opportunities in SBDD. Challenges include oversimplified problem formulations, limited out-of-distribution generalization, biosecurity concerns related to the misuse of structural data, insufficient evaluation metrics and large-scale benchmarks, and the need for experimental validation and enhanced model interpretability. Opportunities lie in leveraging multimodal datasets, integrating domain knowledge, developing comprehensive benchmarks, establishing criteria aligned with clinical outcomes, and designing foundation models to expand the scope of design tasks. We also curate \url{https://github.com/zaixizhang/Awesome-SBDD}, reflecting ongoing contributions and new datasets in SBDD.
Related papers
- ProteinBench: A Holistic Evaluation of Protein Foundation Models [53.59325047872512]
We introduce ProteinBench, a holistic evaluation framework for protein foundation models.
Our approach consists of three key components: (i) A taxonomic classification of tasks that broadly encompass the main challenges in the protein domain, based on the relationships between different protein modalities; (ii) A multi-metric evaluation approach that assesses performance across four key dimensions: quality, novelty, diversity, and robustness; and (iii) In-depth analyses from various user objectives, providing a holistic view of model performance.
arXiv Detail & Related papers (2024-09-10T06:52:33Z) - CBGBench: Fill in the Blank of Protein-Molecule Complex Binding Graph [66.11279161533619]
CBGBench is a benchmark for structure-based drug design (SBDD)
By categorizing existing methods based on their attributes, CBGBench implements various cutting-edge methods.
We have adapted these models to a range of tasks essential in drug design, which are considered sub-tasks within the graph fill-in-the-blank tasks.
arXiv Detail & Related papers (2024-06-16T08:20:24Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - Generative Structural Design Integrating BIM and Diffusion Model [4.619347136761891]
This study introduces building information modeling ( BIM) into intelligent structural design and establishes a structural design pipeline integrating BIM and generative AI.
In terms of generation framework, inspired by the process of human drawing, a novel 2-stage generation framework is proposed to reduce the generation difficulty for AI models.
In terms of generative AI tools adopted, diffusion models (DMs) are introduced to replace widely used generative adversarial network (GAN)-based models, and a novel physics-based conditional diffusion model (PCDM) is proposed to consider different design prerequisites.
arXiv Detail & Related papers (2023-11-07T15:05:19Z) - Human as Points: Explicit Point-based 3D Human Reconstruction from
Single-view RGB Images [78.56114271538061]
We introduce an explicit point-based human reconstruction framework called HaP.
Our approach is featured by fully-explicit point cloud estimation, manipulation, generation, and refinement in the 3D geometric space.
Our results may indicate a paradigm rollback to the fully-explicit and geometry-centric algorithm design.
arXiv Detail & Related papers (2023-11-06T05:52:29Z) - Hyperspectral Benchmark: Bridging the Gap between HSI Applications
through Comprehensive Dataset and Pretraining [11.935879491267634]
Hyperspectral Imaging (HSI) serves as a non-destructive spatial spectroscopy technique with a multitude of potential applications.
A recurring challenge lies in the limited size of the target datasets, impeding exhaustive architecture search.
This study introduces an innovative benchmark dataset encompassing three markedly distinct HSI applications.
arXiv Detail & Related papers (2023-09-20T08:08:34Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
This work proposes easy to interpret validation diagnostics for multi-dimensional conditional (posterior) density estimators based on NF.
It also offers theoretical guarantees based on results of local consistency.
This work should help the design of better specified models or drive the development of novel SBI-algorithms.
arXiv Detail & Related papers (2022-11-17T15:48:06Z) - T-METASET: Task-Aware Generation of Metamaterial Datasets by
Diversity-Based Active Learning [14.668178146934588]
We propose t-METASET: an intelligent data acquisition framework for task-aware dataset generation.
We validate the proposed framework in three hypothetical deployment scenarios, which encompass general use, task-aware use, and tailorable use.
arXiv Detail & Related papers (2022-02-21T22:46:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.