Sequential Recommendation with Controllable Diversification: Representation Degeneration and Diversity
- URL: http://arxiv.org/abs/2306.11986v2
- Date: Fri, 19 Jul 2024 00:03:11 GMT
- Title: Sequential Recommendation with Controllable Diversification: Representation Degeneration and Diversity
- Authors: Ziwei Fan, Zhiwei Liu, Hao Peng, Philip S. Yu,
- Abstract summary: We argue that the representation degeneration issue is the root cause of insufficient recommendation diversity in existing SR methods.
We propose a novel Singular sPectrum sMoothing regularization for Recommendation (SPMRec), which acts as a controllable surrogate to alleviate the degeneration.
- Score: 59.24517649169952
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequential recommendation (SR) models the dynamic user preferences and generates the next-item prediction as the affinity between the sequence and items, in a joint latent space with low dimensions (i.e., the sequence and item embedding space). Both sequence and item representations suffer from the representation degeneration issue due to the user/item long-tail distributions, where tail users/ items are indistinguishably distributed as a narrow cone in the latent space. We argue that the representation degeneration issue is the root cause of insufficient recommendation diversity in existing SR methods, impairing the user potential exploration and further worsening the echo chamber issue. In this work, we first disclose the connection between the representation degeneration and recommendation diversity, in which severer representation degeneration indicates lower recommendation diversity. We then propose a novel Singular sPectrum sMoothing regularization for Recommendation (SPMRec), which acts as a controllable surrogate to alleviate the degeneration and achieve the balance between recommendation diversity and performance. The proposed smoothing regularization alleviates the degeneration by maximizing the area under the singular value curve, which is also the diversity surrogate. We conduct experiments on four benchmark datasets to demonstrate the superiority of SPMRec, and show that the proposed singular spectrum smoothing can control the balance of recommendation performance and diversity simultaneously.
Related papers
- DLCRec: A Novel Approach for Managing Diversity in LLM-Based Recommender Systems [9.433227503973077]
We propose a novel framework designed to enable fine-grained control over diversity in LLM-based recommendations.
Unlike traditional methods, DLCRec adopts a fine-grained task decomposition strategy, breaking down the recommendation process into three sub-tasks.
We introduce two data augmentation techniques that enhance the model's robustness to noisy and out-of-distribution data.
arXiv Detail & Related papers (2024-08-22T15:10:56Z) - DimeRec: A Unified Framework for Enhanced Sequential Recommendation via Generative Diffusion Models [39.49215596285211]
Sequential Recommendation (SR) plays a pivotal role in recommender systems by tailoring recommendations to user preferences based on their non-stationary historical interactions.
We propose a novel framework called DimeRec that combines a guidance extraction module (GEM) and a generative diffusion aggregation module (DAM)
Our numerical experiments demonstrate that DimeRec significantly outperforms established baseline methods across three publicly available datasets.
arXiv Detail & Related papers (2024-08-22T06:42:09Z) - Semantic Codebook Learning for Dynamic Recommendation Models [55.98259490159084]
Dynamic sequential recommendation (DSR) can generate model parameters based on user behavior to improve personalization of sequential recommendation.
It faces the challenges of large parameter search space and sparse and noisy user-item interactions, which reduces the applicability of the generated model parameters.
The Semantic Codebook Learning for Dynamic Recommendation Models (SOLID) framework presents a significant advancement in DSR by effectively tackling these challenges.
arXiv Detail & Related papers (2024-07-31T19:25:25Z) - Diffusion-based Contrastive Learning for Sequential Recommendation [6.3482831836623355]
We propose a Context-aware Diffusion-based Contrastive Learning for Sequential Recommendation, named CaDiRec.
CaDiRec employs a context-aware diffusion model to generate alternative items for the given positions within a sequence.
We train the entire framework in an end-to-end manner, with shared item embeddings between the diffusion model and the recommendation model.
arXiv Detail & Related papers (2024-05-15T14:20:37Z) - Generative Slate Recommendation with Reinforcement Learning [49.75985313698214]
reinforcement learning algorithms can be used to optimize user engagement in recommender systems.
However, RL approaches are intractable in the slate recommendation scenario.
In that setting, an action corresponds to a slate that may contain any combination of items.
In this work we propose to encode slates in a continuous, low-dimensional latent space learned by a variational auto-encoder.
We are able to (i) relax assumptions required by previous work, and (ii) improve the quality of the action selection by modeling full slates.
arXiv Detail & Related papers (2023-01-20T15:28:09Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data.
Old and new issues remain, including data-sparsity and noisy data.
We propose Contrastive Self-Supervised Learning for sequential Recommendation (CoSeRec)
arXiv Detail & Related papers (2021-08-14T07:15:25Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
Variational Inference (VI) is a popular alternative to exact sampling in Bayesian inference.
Importance sampling (IS) is often used to fine-tune and de-bias the estimates of approximate Bayesian inference procedures.
We propose a novel combination of optimization and sampling techniques for approximate Bayesian inference.
arXiv Detail & Related papers (2021-06-30T11:00:24Z) - Adversarial and Contrastive Variational Autoencoder for Sequential
Recommendation [25.37244686572865]
We propose a novel method called Adversarial and Contrastive Variational Autoencoder (ACVAE) for sequential recommendation.
We first introduce the adversarial training for sequence generation under the Adversarial Variational Bayes framework, which enables our model to generate high-quality latent variables.
Besides, when encoding the sequence, we apply a recurrent and convolutional structure to capture global and local relationships in the sequence.
arXiv Detail & Related papers (2021-03-19T09:01:14Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
We present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation.
Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time.
arXiv Detail & Related papers (2020-05-21T12:28:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.