Spiking Neural Network for Ultra-low-latency and High-accurate Object
Detection
- URL: http://arxiv.org/abs/2306.12010v2
- Date: Tue, 27 Jun 2023 09:02:02 GMT
- Title: Spiking Neural Network for Ultra-low-latency and High-accurate Object
Detection
- Authors: Jinye Qu, Zeyu Gao, Tielin Zhang, Yanfeng Lu, Huajin Tang, Hong Qiao
- Abstract summary: Spiking Neural Networks (SNNs) have garnered widespread interest for their energy efficiency and brain-inspired event-driven properties.
Recent methods like Spiking-YOLO have expanded the SNNs to more challenging object detection tasks.
They often suffer from high latency and low detection accuracy, making them difficult to deploy on latency sensitive mobile platforms.
- Score: 18.037802439500858
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking Neural Networks (SNNs) have garnered widespread interest for their
energy efficiency and brain-inspired event-driven properties. While recent
methods like Spiking-YOLO have expanded the SNNs to more challenging object
detection tasks, they often suffer from high latency and low detection
accuracy, making them difficult to deploy on latency sensitive mobile
platforms. Furthermore, the conversion method from Artificial Neural Networks
(ANNs) to SNNs is hard to maintain the complete structure of the ANNs,
resulting in poor feature representation and high conversion errors. To address
these challenges, we propose two methods: timesteps compression and
spike-time-dependent integrated (STDI) coding. The former reduces the timesteps
required in ANN-SNN conversion by compressing information, while the latter
sets a time-varying threshold to expand the information holding capacity. We
also present a SNN-based ultra-low latency and high accurate object detection
model (SUHD) that achieves state-of-the-art performance on nontrivial datasets
like PASCAL VOC and MS COCO, with about remarkable 750x fewer timesteps and 30%
mean average precision (mAP) improvement, compared to the Spiking-YOLO on MS
COCO datasets. To the best of our knowledge, SUHD is the deepest spike-based
object detection model to date that achieves ultra low timesteps to complete
the lossless conversion.
Related papers
- Towards Low-latency Event-based Visual Recognition with Hybrid Step-wise Distillation Spiking Neural Networks [50.32980443749865]
Spiking neural networks (SNNs) have garnered significant attention for their low power consumption and high biologicalability.
Current SNNs struggle to balance accuracy and latency in neuromorphic datasets.
We propose Step-wise Distillation (HSD) method, tailored for neuromorphic datasets.
arXiv Detail & Related papers (2024-09-19T06:52:34Z) - Highly Efficient SNNs for High-speed Object Detection [7.3074002563489024]
Experimental results show that our efficient SNN can achieve 118X speedup on GPU with only 1.5MB parameters for object detection tasks.
We further verify our SNN on FPGA platform and the proposed model can achieve 800+FPS object detection with extremely low latency.
arXiv Detail & Related papers (2023-09-27T10:31:12Z) - Low Latency of object detection for spikng neural network [3.404826786562694]
Spiking Neural Networks are well-suited for edge AI applications due to their binary spike nature.
In this paper, we focus on generating highly accurate and low-latency SNNs specifically for object detection.
arXiv Detail & Related papers (2023-09-27T10:26:19Z) - Enabling energy-Efficient object detection with surrogate gradient
descent in spiking neural networks [0.40054215937601956]
Spiking Neural Networks (SNNs) are a biologically plausible neural network model with significant advantages in both event-driven processing and processing-temporal information.
In this study, we introduce the Current Mean Decoding (CMD) method, which solves the regression problem to facilitate the training of deep SNNs for object detection tasks.
Based on the gradient surrogate and CMD, we propose the SNN-YOLOv3 model for object detection.
arXiv Detail & Related papers (2023-09-07T15:48:00Z) - Deep Directly-Trained Spiking Neural Networks for Object Detection [20.594942840081757]
EMS-YOLO is a novel directly-trained SNN framework for object detection.
We design a full-spike residual block, EMS-ResNet, which can effectively extend the depth of the directly-trained SNN with low power consumption.
It is shown that our model could achieve comparable performance to the ANN with the same architecture while consuming 5.83 times less energy.
arXiv Detail & Related papers (2023-07-21T08:10:26Z) - Adaptive-SpikeNet: Event-based Optical Flow Estimation using Spiking
Neural Networks with Learnable Neuronal Dynamics [6.309365332210523]
Spiking Neural Networks (SNNs) with their neuro-inspired event-driven processing can efficiently handle asynchronous data.
We propose an adaptive fully-spiking framework with learnable neuronal dynamics to alleviate the spike vanishing problem.
Our experiments on datasets show an average reduction of 13% in average endpoint error (AEE) compared to state-of-the-art ANNs.
arXiv Detail & Related papers (2022-09-21T21:17:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.