Distributed Random Reshuffling Methods with Improved Convergence
- URL: http://arxiv.org/abs/2306.12037v2
- Date: Wed, 17 Apr 2024 02:51:49 GMT
- Title: Distributed Random Reshuffling Methods with Improved Convergence
- Authors: Kun Huang, Linli Zhou, Shi Pu,
- Abstract summary: This paper proposes two distributed random reshuffling methods, namely Gradient Tracking with Random Reshuffling (GT-RR) and Exact Diffusion with Random Reshuffling (ED-RR)
- Score: 8.112170817124444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes two distributed random reshuffling methods, namely Gradient Tracking with Random Reshuffling (GT-RR) and Exact Diffusion with Random Reshuffling (ED-RR), to solve the distributed optimization problem over a connected network, where a set of agents aim to minimize the average of their local cost functions. Both algorithms invoke random reshuffling (RR) update for each agent, inherit favorable characteristics of RR for minimizing smooth nonconvex objective functions, and improve the performance of previous distributed random reshuffling methods both theoretically and empirically. Specifically, both GT-RR and ED-RR achieve the convergence rate of $O(1/[(1-\lambda)^{1/3}m^{1/3}T^{2/3}])$ in driving the (minimum) expected squared norm of the gradient to zero, where $T$ denotes the number of epochs, $m$ is the sample size for each agent, and $1-\lambda$ represents the spectral gap of the mixing matrix. When the objective functions further satisfy the Polyak-{\L}ojasiewicz (PL) condition, we show GT-RR and ED-RR both achieve $O(1/[(1-\lambda)mT^2])$ convergence rate in terms of the averaged expected differences between the agents' function values and the global minimum value. Notably, both results are comparable to the convergence rates of centralized RR methods (up to constant factors depending on the network topology) and outperform those of previous distributed random reshuffling algorithms. Moreover, we support the theoretical findings with a set of numerical experiments.
Related papers
- Variance-Reducing Couplings for Random Features [57.73648780299374]
Random features (RFs) are a popular technique to scale up kernel methods in machine learning.
We find couplings to improve RFs defined on both Euclidean and discrete input spaces.
We reach surprising conclusions about the benefits and limitations of variance reduction as a paradigm.
arXiv Detail & Related papers (2024-05-26T12:25:09Z) - A New Random Reshuffling Method for Nonsmooth Nonconvex Finite-sum Optimization [6.314057999212246]
Random reshuffling techniques are used in large-scale applications, such as neural networks.
In this paper, we show that the random reshuffling-type iterations generated by norm-PRR converge to a linear setting.
Finally, we derive last convergence rates that can be applied to the proposed approach.
arXiv Detail & Related papers (2023-12-02T07:12:00Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Distributed Extra-gradient with Optimal Complexity and Communication
Guarantees [60.571030754252824]
We consider monotone variational inequality (VI) problems in multi-GPU settings where multiple processors/workers/clients have access to local dual vectors.
Extra-gradient, which is a de facto algorithm for monotone VI problems, has not been designed to be communication-efficient.
We propose a quantized generalized extra-gradient (Q-GenX), which is an unbiased and adaptive compression method tailored to solve VIs.
arXiv Detail & Related papers (2023-08-17T21:15:04Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Sampling (AIS) synthesizes weighted samples from an intractable distribution.
We propose the Constant Rate AIS algorithm and its efficient implementation for $alpha$-divergences.
arXiv Detail & Related papers (2023-06-27T08:15:28Z) - Stochastic Approximation Approaches to Group Distributionally Robust Optimization and Beyond [89.72693227960274]
This paper investigates group distributionally robust optimization (GDRO) with the goal of learning a model that performs well over $m$ different distributions.
To reduce the number of samples in each round from $m$ to 1, we cast GDRO as a two-player game, where one player conducts and the other executes an online algorithm for non-oblivious multi-armed bandits.
In the second scenario, we propose to optimize the average top-$k$ risk instead of the maximum risk, thereby mitigating the impact of distributions.
arXiv Detail & Related papers (2023-02-18T09:24:15Z) - Distributed Random Reshuffling over Networks [7.013052033764372]
A distributed resh-upr (D-RR) algorithm is proposed to solve the problem of convex and smooth objective functions.
In particular, for smooth convex objective functions, D-RR achieves D-T convergence rate (where $T counts epoch number) in terms of distance between the global drives.
arXiv Detail & Related papers (2021-12-31T03:59:37Z) - A Unified Framework for Multi-distribution Density Ratio Estimation [101.67420298343512]
Binary density ratio estimation (DRE) provides the foundation for many state-of-the-art machine learning algorithms.
We develop a general framework from the perspective of Bregman minimization divergence.
We show that our framework leads to methods that strictly generalize their counterparts in binary DRE.
arXiv Detail & Related papers (2021-12-07T01:23:20Z) - Improving the Transient Times for Distributed Stochastic Gradient
Methods [5.215491794707911]
We study a distributed gradient algorithm, called exact diffusion adaptive stepsizes (EDAS)
We show EDAS achieves the same network independent convergence rate as centralized gradient descent (SGD)
To the best of our knowledge, EDAS achieves the shortest time when the average of the $n$ cost functions is strongly convex.
arXiv Detail & Related papers (2021-05-11T08:09:31Z) - Proximal and Federated Random Reshuffling [11.83842808044211]
We propose two new algorithms for Random Reshuffling.
ProxRR and FedRR solve composite convex finite-sum minimization problems.
ProxRR is faster than algorithms that evaluate the proximal operator in every iteration.
arXiv Detail & Related papers (2021-02-12T18:59:24Z) - Random Reshuffling: Simple Analysis with Vast Improvements [9.169947558498535]
Random Reshuffling (RR) is an algorithm for minimizing finite-sum functions that utilizes iterative descent steps conjunction in with data reshuffuffling.
arXiv Detail & Related papers (2020-06-10T17:57:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.