HSR-Diff:Hyperspectral Image Super-Resolution via Conditional Diffusion
Models
- URL: http://arxiv.org/abs/2306.12085v1
- Date: Wed, 21 Jun 2023 08:04:30 GMT
- Title: HSR-Diff:Hyperspectral Image Super-Resolution via Conditional Diffusion
Models
- Authors: Chanyue Wu, Dong Wang, Hanyu Mao, Ying Li
- Abstract summary: We propose an HSI Super-resolution (SR) approach with Conditional Diffusion Models (HSR-Diff)
HSR-Diff generates an HR-HSI via repeated refinement, in which the HR-HSI is spatial with pure Gaussian noise and iteratively refined.
In addition, a progressive learning strategy is employed to exploit the global information of full-resolution images.
- Score: 10.865272587124027
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the proven significance of hyperspectral images (HSIs) in performing
various computer vision tasks, its potential is adversely affected by the
low-resolution (LR) property in the spatial domain, resulting from multiple
physical factors. Inspired by recent advancements in deep generative models, we
propose an HSI Super-resolution (SR) approach with Conditional Diffusion Models
(HSR-Diff) that merges a high-resolution (HR) multispectral image (MSI) with
the corresponding LR-HSI. HSR-Diff generates an HR-HSI via repeated refinement,
in which the HR-HSI is initialized with pure Gaussian noise and iteratively
refined. At each iteration, the noise is removed with a Conditional Denoising
Transformer (CDF ormer) that is trained on denoising at different noise levels,
conditioned on the hierarchical feature maps of HR-MSI and LR-HSI. In addition,
a progressive learning strategy is employed to exploit the global information
of full-resolution images. Systematic experiments have been conducted on four
public datasets, demonstrating that HSR-Diff outperforms state-of-the-art
methods.
Related papers
- UnmixingSR: Material-aware Network with Unsupervised Unmixing as Auxiliary Task for Hyperspectral Image Super-resolution [5.167168688234238]
This paper proposes a component-aware hyperspectral image (HIS) super-resolution network called UnmixingSR.
We use the bond between LR abundances and HR abundances to boost the stability of our method in solving SR problems.
Experimental results show that unmixing process as an auxiliary task incorporated into the SR problem is feasible and rational.
arXiv Detail & Related papers (2024-07-09T03:41:02Z) - Generating Content for HDR Deghosting from Frequency View [56.103761824603644]
Recent Diffusion Models (DMs) have been introduced in HDR imaging field.
DMs require extensive iterations with large models to estimate entire images.
We propose the Low-Frequency aware Diffusion (LF-Diff) model for ghost-free HDR imaging.
arXiv Detail & Related papers (2024-04-01T01:32:11Z) - Deep unfolding Network for Hyperspectral Image Super-Resolution with Automatic Exposure Correction [38.807302724277754]
The fusion of high spatial resolution multispectral image (HR-MSI) and low spatial resolution hyperspectral image (LR-HSI) has been recognized as an effective method for HSI super-resolution (HSI-SR)
In contrast to most existing methods based on respective low-light enhancements (LLIE) of MSI and HSI followed by their fusion, a deep Unfolding HSI Super-Resolution with Automatic Exposure Correction (UHSR-AEC) is proposed.
arXiv Detail & Related papers (2024-03-14T04:41:30Z) - Towards High-quality HDR Deghosting with Conditional Diffusion Models [88.83729417524823]
High Dynamic Range (LDR) images can be recovered from several Low Dynamic Range (LDR) images by existing Deep Neural Networks (DNNs) techniques.
DNNs still generate ghosting artifacts when LDR images have saturation and large motion.
We formulate the HDR deghosting problem as an image generation that leverages LDR features as the diffusion model's condition.
arXiv Detail & Related papers (2023-11-02T01:53:55Z) - Hyperspectral and Multispectral Image Fusion Using the Conditional
Denoising Diffusion Probabilistic Model [18.915369996829984]
We propose a deep fusion method based on the conditional denoising diffusion probabilistic model, called DDPM-Fus.
Experiments conducted on one indoor and two remote sensing datasets show the superiority of the proposed model when compared with other advanced deep learningbased fusion methods.
arXiv Detail & Related papers (2023-07-07T07:08:52Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
We propose a diffusion model-based super-resolution method called ACDMSR.
Our method adapts the standard diffusion model to perform super-resolution through a deterministic iterative denoising process.
Our approach generates more visually realistic counterparts for low-resolution images, emphasizing its effectiveness in practical scenarios.
arXiv Detail & Related papers (2023-07-03T06:49:04Z) - HDNet: High-resolution Dual-domain Learning for Spectral Compressive
Imaging [138.04956118993934]
We propose a high-resolution dual-domain learning network (HDNet) for HSI reconstruction.
On the one hand, the proposed HR spatial-spectral attention module with its efficient feature fusion provides continuous and fine pixel-level features.
On the other hand, frequency domain learning (FDL) is introduced for HSI reconstruction to narrow the frequency domain discrepancy.
arXiv Detail & Related papers (2022-03-04T06:37:45Z) - A Latent Encoder Coupled Generative Adversarial Network (LE-GAN) for
Efficient Hyperspectral Image Super-resolution [3.1023808510465627]
generative adversarial network (GAN) has proven to be an effective deep learning framework for image super-resolution.
To alleviate the problem of mode collapse, this work has proposed a novel GAN model coupled with a latent encoder (LE-GAN)
LE-GAN can map the generated spectral-spatial features from the image space to the latent space and produce a coupling component to regularise the generated samples.
arXiv Detail & Related papers (2021-11-16T18:40:19Z) - SRDiff: Single Image Super-Resolution with Diffusion Probabilistic
Models [19.17571465274627]
Single image super-resolution (SISR) aims to reconstruct high-resolution (HR) images from the given low-resolution (LR) ones.
We propose a novel single image super-resolution diffusion probabilistic model (SRDiff)
SRDiff is optimized with a variant of the variational bound on the data likelihood and can provide diverse and realistic SR predictions.
arXiv Detail & Related papers (2021-04-30T12:31:25Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
We propose a novel Frequency Consistent Adaptation (FCA) that ensures the frequency domain consistency when applying Super-Resolution (SR) methods to the real scene.
We estimate degradation kernels from unsupervised images and generate the corresponding Low-Resolution (LR) images.
Based on the domain-consistent LR-HR pairs, we train easy-implemented Convolutional Neural Network (CNN) SR models.
arXiv Detail & Related papers (2020-12-18T08:25:39Z) - Non-local Meets Global: An Iterative Paradigm for Hyperspectral Image
Restoration [66.68541690283068]
We propose a unified paradigm combining the spatial and spectral properties for hyperspectral image restoration.
The proposed paradigm enjoys performance superiority from the non-local spatial denoising and light computation complexity.
Experiments on HSI denoising, compressed reconstruction, and inpainting tasks, with both simulated and real datasets, demonstrate its superiority.
arXiv Detail & Related papers (2020-10-24T15:53:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.