論文の概要: An Efficient Virtual Data Generation Method for Reducing Communication
in Federated Learning
- arxiv url: http://arxiv.org/abs/2306.12088v2
- Date: Wed, 28 Jun 2023 09:22:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-29 17:11:37.777927
- Title: An Efficient Virtual Data Generation Method for Reducing Communication
in Federated Learning
- Title(参考訳): フェデレーション学習におけるコミュニケーション削減のための効率的な仮想データ生成手法
- Authors: Cheng Yang, Xue Yang, Dongxian Wu, Xiaohu Tang
- Abstract要約: いくつかの古典的なスキームでは、サーバがローカルモデルから参加者のトレーニングデータに関する補助情報を抽出し、中央ダミーデータセットを構築することができると仮定している。
サーバはダミーデータセットを使用して、集約されたグローバルモデルを微調整し、より少ない通信ラウンドでターゲットテストの精度を達成する。
本稿では、上記のソリューションをデータベースの通信効率FLフレームワークにまとめる。
- 参考スコア(独自算出の注目度): 34.39250699866746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Communication overhead is one of the major challenges in Federated
Learning(FL). A few classical schemes assume the server can extract the
auxiliary information about training data of the participants from the local
models to construct a central dummy dataset. The server uses the dummy dataset
to finetune aggregated global model to achieve the target test accuracy in
fewer communication rounds. In this paper, we summarize the above solutions
into a data-based communication-efficient FL framework. The key of the proposed
framework is to design an efficient extraction module(EM) which ensures the
dummy dataset has a positive effect on finetuning aggregated global model.
Different from the existing methods that use generator to design EM, our
proposed method, FedINIBoost borrows the idea of gradient match to construct
EM. Specifically, FedINIBoost builds a proxy dataset of the real dataset in two
steps for each participant at each communication round. Then the server
aggregates all the proxy datasets to form a central dummy dataset, which is
used to finetune aggregated global model. Extensive experiments verify the
superiority of our method compared with the existing classical method, FedAVG,
FedProx, Moon and FedFTG. Moreover, FedINIBoost plays a significant role in
finetuning the performance of aggregated global model at the initial stage of
FL.
- Abstract(参考訳): コミュニケーションのオーバーヘッドは、連合学習(fl)における大きな課題の1つです。
いくつかの古典的なスキームでは、サーバがローカルモデルから参加者のトレーニングデータに関する補助情報を抽出して中央ダミーデータセットを構築することができると仮定している。
サーバはダミーデータセットを使用して、集約されたグローバルモデルを微調整し、より少ない通信ラウンドでターゲットテスト精度を達成する。
本稿では、上記のソリューションをデータベースの通信効率の高いflフレームワークにまとめる。
提案フレームワークの鍵となるのは,ダミーデータセットが集約されたグローバルモデルに正の影響を与えることを保証する効率的な抽出モジュール(EM)を設計することである。
ジェネレータを使ってEMを設計する既存手法とは異なり,提案手法では勾配マッチングの概念を取り入れてEMを構築する。
具体的には、FedINIBoostは、実際のデータセットのプロキシデータセットを、各コミュニケーションラウンドの参加者毎に2つのステップで構築する。
その後、サーバはすべてのプロキシデータセットを集約し、集約されたグローバルモデルを微調整するために使用される中央ダミーデータセットを形成する。
従来手法であるFedAVG,FedProx,Moon,FedFTGと比較し,本手法の優位性を検証した。
さらに、FedINIBoostは、FLの初期における集約グローバルモデルの性能を微調整する上で重要な役割を果たす。
関連論文リスト
- FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
フェデレートラーニング(FL)は、分散データに基づく機械学習モデルの協調トレーニングを可能にする。
クライアント間でのデータはしばしば、クラス不均衡、特徴分散スキュー、サンプルサイズ不均衡、その他の現象によって大きく異なる。
本稿では,バイレベル最適化を用いた新しいベイズPFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-29T11:28:06Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
コンセンサス指向生成による連合学習(FedCOG)を提案する。
FedCOGは、補完的なデータ生成と知識蒸留に基づくモデルトレーニングという、クライアント側の2つの重要なコンポーネントで構成されています。
古典的および実世界のFLデータセットの実験は、FedCOGが一貫して最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2023-12-10T18:49:59Z) - FedCME: Client Matching and Classifier Exchanging to Handle Data
Heterogeneity in Federated Learning [5.21877373352943]
クライアント間のデータの均一性は、フェデレートラーニング(FL)における重要な課題の1つです。
クライアントマッチングと分類器交換によりFedCMEという新しいFLフレームワークを提案する。
実験結果から,FedCMEはFedAvg,FedProx,MOON,FedRSよりも高い性能を示した。
論文 参考訳(メタデータ) (2023-07-17T15:40:45Z) - Optimizing Server-side Aggregation For Robust Federated Learning via
Subspace Training [80.03567604524268]
クライアント間の非IIDデータ分散と中毒攻撃は、現実世界のフェデレーション学習システムにおける2つの大きな課題である。
サーバ側集約プロセスを最適化する汎用的なアプローチであるSmartFLを提案する。
本稿では,SmartFLの収束と一般化能力に関する理論的解析を行う。
論文 参考訳(メタデータ) (2022-11-10T13:20:56Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
フェデレートラーニング(FL)は近年、学術や産業から注目を集めている。
我々は,複数の局所的代理関数からグローバルなトレーニング目標を構築するためのFedDMを提案する。
そこで本研究では,各クライアントにデータ集合を構築し,元のデータから得られた損失景観を局所的にマッチングする。
論文 参考訳(メタデータ) (2022-07-20T04:55:18Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
フェデレーションラーニングにより、クライアントはプライベートデータを中央サーバーに送信することなく、グローバルモデルを共同でトレーニングできます。
em-Influenceという新しい概念を定義し、パラメータに対するこの影響を定量化し、このメトリクスを推定する効果的な効率的なモデルを提案しました。
論文 参考訳(メタデータ) (2020-12-20T14:34:36Z) - Analysis and Optimal Edge Assignment For Hierarchical Federated Learning
on Non-IID Data [43.32085029569374]
フェデレーション学習アルゴリズムは、ユーザのデバイスに格納された分散および多様なデータを活用して、グローバルな現象を学習することを目的としている。
参加者のデータが強く歪んだ場合(例えば、非iidの場合)、ローカルモデルはローカルデータに過剰に適合し、低パフォーマンスなグローバルモデルに繋がる。
ユーザエッジ層にFederated Gradient Descent、エッジクラウド層にFederated Averagingを実行する階層学習システムを提案する。
論文 参考訳(メタデータ) (2020-12-10T12:18:13Z) - FedFMC: Sequential Efficient Federated Learning on Non-iid Data [0.0]
FedFMC(Fork-Consolidate-Merge)は、異なるグローバルモデルの更新をデバイスに強制してマージし、別々のモデルをひとつに統合する手法である。
我々はFedFMCが、グローバルに共有されたデータのサブセットを用いることなく、また通信コストを増大させることなく、フェデレーション学習コンテキストにおける非IDデータに対する以前のアプローチを大幅に改善したことを示す。
論文 参考訳(メタデータ) (2020-06-19T02:36:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。