論文の概要: Towards Accurate Translation via Semantically Appropriate Application of
Lexical Constraints
- arxiv url: http://arxiv.org/abs/2306.12089v1
- Date: Wed, 21 Jun 2023 08:08:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 14:17:38.334451
- Title: Towards Accurate Translation via Semantically Appropriate Application of
Lexical Constraints
- Title(参考訳): 語彙制約の逐次的適用による正確な翻訳に向けて
- Authors: Yujin Baek (1), Koanho Lee (1), Dayeon Ki (2), Hyoung-Gyu Lee (3),
Cheonbok Park (3) and Jaegul Choo (1) ((1) KAIST, (2) Korea University, (3)
Papago, Naver Corp.)
- Abstract要約: 我々は,LNMT研究の現在評価過程にある2つの重要かつ未研究の問題に焦点をあてる。
モデルは、トレーニング中に"ホモグラフ"や"見えない"といった難しい語彙制約に対処する必要があります。
PLUMCOTは、事前学習された言語モデルから、目に見えない語彙制約に関する情報を文脈的にリッチに統合する。
また、HOLLYは、モデルが「ホログラフィック」および「見えない」語彙制約に対処する能力を評価するための評価ベンチマークである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lexically-constrained NMT (LNMT) aims to incorporate user-provided
terminology into translations. Despite its practical advantages, existing work
has not evaluated LNMT models under challenging real-world conditions. In this
paper, we focus on two important but under-studied issues that lie in the
current evaluation process of LNMT studies. The model needs to cope with
challenging lexical constraints that are "homographs" or "unseen" during
training. To this end, we first design a homograph disambiguation module to
differentiate the meanings of homographs. Moreover, we propose PLUMCOT, which
integrates contextually rich information about unseen lexical constraints from
pre-trained language models and strengthens a copy mechanism of the pointer
network via direct supervision of a copying score. We also release HOLLY, an
evaluation benchmark for assessing the ability of a model to cope with
"homographic" and "unseen" lexical constraints. Experiments on HOLLY and the
previous test setup show the effectiveness of our method. The effects of
PLUMCOT are shown to be remarkable in "unseen" constraints. Our dataset is
available at https://github.com/papago-lab/HOLLY-benchmark
- Abstract(参考訳): Lexically-Constrained NMT (LNMT) は、ユーザが提供する用語を翻訳に組み込むことを目的としている。
実用上の優位性にもかかわらず、既存の研究はLNMTモデルを現実の挑戦的な条件下で評価していない。
本稿では,LNMT研究の現在評価過程にある2つの重要かつ未研究の問題に焦点をあてる。
モデルは、トレーニング中に"ホモグラフ"や"見えない"といった難しい語彙制約に対処する必要があります。
この目的のために、まず、ホモグラフの意味を区別するホモグラフ曖昧化モジュールを設計する。
さらに,事前学習した言語モデルから未知の語彙制約に関する情報を文脈的にリッチに統合し,コピースコアの直接監視を通じてポインタネットワークのコピーメカニズムを強化するPLUMCOTを提案する。
また,「ホログラフィック」と「見当たらない」語彙制約に対応するモデルの能力を評価するための評価ベンチマークであるhollyをリリースする。
HOLLY実験と以前のテスト設定は,本手法の有効性を示した。
PLUMCOTの効果は、"見えない"制約において顕著である。
私たちのデータセットはhttps://github.com/papago-lab/holly-benchmarkで利用可能です。
関連論文リスト
- How Hard is this Test Set? NLI Characterization by Exploiting Training Dynamics [49.9329723199239]
本稿では, 実例と非実例を手作業で構築することなく, 挑戦的なテストセットを自動生成する手法を提案する。
一般的なNLIデータセットのテストセットを,トレーニングダイナミクスを利用した3つの難易度に分類する。
我々の評価法がトレーニングセットに適用された場合、トレーニング対象データのごく一部でトレーニングされたモデルは、フルデータセットでトレーニングされたモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-04T13:39:21Z) - Pretraining Data Detection for Large Language Models: A Divergence-based Calibration Method [108.56493934296687]
本研究では,乱数から発散する概念に触発された偏差に基づくキャリブレーション手法を導入し,プリトレーニングデータ検出のためのトークン確率のキャリブレーションを行う。
我々は,中国語テキスト上でのLLMの検出手法の性能を評価するために,中国語のベンチマークであるPatentMIAを開発した。
論文 参考訳(メタデータ) (2024-09-23T07:55:35Z) - ALMol: Aligned Language-Molecule Translation LLMs through Offline Preference Contrastive Optimisation [2.296475290901356]
機械語-分子翻訳に焦点をあて、コントラスト優先最適化と呼ばれる新しい訓練手法を展開する。
その結果,我々のモデルでは,他のモデルと比較して最大32%の改善が達成された。
論文 参考訳(メタデータ) (2024-05-14T13:59:24Z) - Contextual Spelling Correction with Language Model for Low-resource Setting [0.0]
文脈理解を伴うSCモデルを提供するために、小規模な単語ベースの変換器LMを訓練する。
コーパスからエラー発生確率(エラーモデル)を抽出する。
LMとエラーモデルを組み合わせることで、よく知られたノイズチャネルフレームワークを通じてSCモデルを開発することができる。
論文 参考訳(メタデータ) (2024-04-28T05:29:35Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
本稿では,新しい評価手法SQC-Scoreを提案する。
主観的質問訂正の原則に着想を得て,新しい評価手法SQC-Scoreを提案する。
3つの情報抽出タスクの結果から,SQC-Scoreは基準値よりもアノテータの方が好ましいことが示された。
論文 参考訳(メタデータ) (2024-04-04T15:36:53Z) - Unsupervised Approach to Evaluate Sentence-Level Fluency: Do We Really
Need Reference? [3.2528685897001455]
本報告では,参照を必要とせず,既存の教師なし手法を用いてテキストの流速を計測する。
提案手法では,様々な単語埋め込みを活用し,RNNアーキテクチャを用いて言語モデルを訓練する。
モデルの性能を評価するため,10言語を対象に比較分析を行った。
論文 参考訳(メタデータ) (2023-12-03T20:09:23Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
本稿では,アクセル時間で測定された等価計算に基づくモデル比較を可能にする実験的プロトコルを提案する。
私たちは、既存の学術的ベンチマークを上回り、品質、多様性、文書の長さで上回る、大規模で多様で高品質な書籍データセットを前処理します。
この研究は、GPT-2アーキテクチャから派生したフィードフォワードモデルと、10倍のスループットを持つ新しいLSTMの形式でのリカレントモデルという2つのベースラインモデルも提供する。
論文 参考訳(メタデータ) (2023-09-20T10:31:17Z) - Towards Fine-Grained Information: Identifying the Type and Location of
Translation Errors [80.22825549235556]
既存のアプローチでは、エラーの位置と型を同期的に考慮することはできない。
我々はtextbf の追加と textbfomission エラーを予測するために FG-TED モデルを構築した。
実験により,本モデルではエラータイプと位置の同時同定が可能であり,最先端の結果が得られた。
論文 参考訳(メタデータ) (2023-02-17T16:20:33Z) - Extract, Denoise, and Enforce: Evaluating and Predicting Lexical
Constraints for Conditional Text Generation [31.341566859483056]
現在のPLMが入力に重要な概念を保存するのに十分であるかどうかを研究するために条件生成の体系的な分析を提示する。
本稿では,制約のない世代に比較して,自動制約抽出,デノベーション,実施の枠組みを提案する。
論文 参考訳(メタデータ) (2021-04-18T05:29:02Z) - Understanding and Improving Lexical Choice in Non-Autoregressive
Translation [98.11249019844281]
低周波ワードの有用な情報を復元するために、生データをNATモデルに公開することを提案する。
提案手法は,WMT14英語-ドイツ語とWMT16ルーマニア英語-英語データセットのSOTA NAT性能を27.8BLEU点,33.8BLEU点まで向上させる。
論文 参考訳(メタデータ) (2020-12-29T03:18:50Z) - Self-Supervised Contrastive Learning for Unsupervised Phoneme
Segmentation [37.054709598792165]
このモデルは畳み込みニューラルネットワークであり、生波形上で直接動作する。
ノイズコントラスト推定原理を用いて信号のスペクトル変化を同定する。
テスト時には、モデル出力にピーク検出アルゴリズムを適用して最終境界を生成する。
論文 参考訳(メタデータ) (2020-07-27T12:10:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。