Predicting protein variants with equivariant graph neural networks
- URL: http://arxiv.org/abs/2306.12231v2
- Date: Mon, 24 Jul 2023 09:36:05 GMT
- Title: Predicting protein variants with equivariant graph neural networks
- Authors: Antonia Boca, Simon Mathis
- Abstract summary: We compare the abilities of equivariant graph neural networks (EGNNs) and sequence-based approaches to identify promising amino-acid mutations.
Our proposed structural approach achieves a competitive performance to sequence-based approaches while being trained on significantly fewer molecules.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pre-trained models have been successful in many protein engineering tasks.
Most notably, sequence-based models have achieved state-of-the-art performance
on protein fitness prediction while structure-based models have been used
experimentally to develop proteins with enhanced functions. However, there is a
research gap in comparing structure- and sequence-based methods for predicting
protein variants that are better than the wildtype protein. This paper aims to
address this gap by conducting a comparative study between the abilities of
equivariant graph neural networks (EGNNs) and sequence-based approaches to
identify promising amino-acid mutations. The results show that our proposed
structural approach achieves a competitive performance to sequence-based
methods while being trained on significantly fewer molecules. Additionally, we
find that combining assay labelled data with structure pre-trained models
yields similar trends as with sequence pre-trained models.
Our code and trained models can be found at:
https://github.com/semiluna/partIII-amino-acid-prediction.
Related papers
- SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
We introduce a novel pre-training strategy for protein foundation models.
It emphasizes the interactions among amino acid residues to enhance the extraction of both short-range and long-range co-evolutionary features.
Trained on a large-scale protein sequence dataset, our model demonstrates superior generalization ability.
arXiv Detail & Related papers (2024-10-31T15:22:03Z) - PSC-CPI: Multi-Scale Protein Sequence-Structure Contrasting for
Efficient and Generalizable Compound-Protein Interaction Prediction [63.50967073653953]
Compound-Protein Interaction prediction aims to predict the pattern and strength of compound-protein interactions for rational drug discovery.
Existing deep learning-based methods utilize only the single modality of protein sequences or structures.
We propose a novel multi-scale Protein Sequence-structure Contrasting framework for CPI prediction.
arXiv Detail & Related papers (2024-02-13T03:51:10Z) - ProtIR: Iterative Refinement between Retrievers and Predictors for
Protein Function Annotation [38.019425619750265]
We introduce a novel variational pseudo-likelihood framework, ProtIR, designed to improve function predictors by incorporating inter-protein similarity modeling.
ProtIR showcases around 10% improvement over vanilla predictor-based methods.
It achieves performance on par with protein language model-based methods, yet without the need for massive pre-training.
arXiv Detail & Related papers (2024-02-10T17:31:46Z) - Retrieved Sequence Augmentation for Protein Representation Learning [40.13920287967866]
We introduce Retrieved Sequence Augmentation for protein representation learning without additional alignment or pre-processing.
We show that our model can transfer to new protein domains better and outperforms MSA Transformer on de novo protein prediction.
Our study fills a much-encountered gap in protein prediction and brings us a step closer to demystifying the domain knowledge needed to understand protein sequences.
arXiv Detail & Related papers (2023-02-24T10:31:45Z) - Reprogramming Pretrained Language Models for Protein Sequence
Representation Learning [68.75392232599654]
We propose Representation Learning via Dictionary Learning (R2DL), an end-to-end representation learning framework.
R2DL reprograms a pretrained English language model to learn the embeddings of protein sequences.
Our model can attain better accuracy and significantly improve the data efficiency by up to $105$ times over the baselines set by pretrained and standard supervised methods.
arXiv Detail & Related papers (2023-01-05T15:55:18Z) - Unsupervised language models for disease variant prediction [3.6942566104432886]
We find that a single protein LM trained on broad sequence datasets can score pathogenicity for any gene variant zero-shot.
We show that it achieves scoring performance comparable to the state of the art when evaluated on clinically labeled variants of disease-related genes.
arXiv Detail & Related papers (2022-12-07T22:28:13Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
We propose a novel structure-aware protein self-supervised learning method to capture structural information of proteins.
In particular, a well-designed graph neural network (GNN) model is pretrained to preserve the protein structural information.
We identify the relation between the sequential information in the protein language model and the structural information in the specially designed GNN model via a novel pseudo bi-level optimization scheme.
arXiv Detail & Related papers (2022-04-06T02:18:41Z) - Protein Representation Learning by Geometric Structure Pretraining [27.723095456631906]
Existing approaches usually pretrain protein language models on a large number of unlabeled amino acid sequences.
We first present a simple yet effective encoder to learn protein geometry features.
Experimental results on both function prediction and fold classification tasks show that our proposed pretraining methods outperform or are on par with the state-of-the-art sequence-based methods using much less data.
arXiv Detail & Related papers (2022-03-11T17:52:13Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
We propose a fully-differentiable approach for protein structure optimization, guided by a data-driven generative network.
Our EBM-Fold approach can efficiently produce high-quality decoys, compared against traditional Rosetta-based structure optimization routines.
arXiv Detail & Related papers (2021-05-11T03:40:29Z) - Deep Learning of High-Order Interactions for Protein Interface
Prediction [58.164371994210406]
We propose to formulate the protein interface prediction as a 2D dense prediction problem.
We represent proteins as graphs and employ graph neural networks to learn node features.
We incorporate high-order pairwise interactions to generate a 3D tensor containing different pairwise interactions.
arXiv Detail & Related papers (2020-07-18T05:39:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.