Concurrent ischemic lesion age estimation and segmentation of CT brain
using a Transformer-based network
- URL: http://arxiv.org/abs/2306.12242v1
- Date: Wed, 21 Jun 2023 13:00:49 GMT
- Title: Concurrent ischemic lesion age estimation and segmentation of CT brain
using a Transformer-based network
- Authors: Adam Marcus, Paul Bentley, Daniel Rueckert
- Abstract summary: We propose a novel end-to-end multi-task transformer-based network optimized for concurrent segmentation and age estimation of cerebral ischemic lesions.
Our method obtains promising performance, with an area under the curve (AUC) of 0.933 for classifying lesion ages =4.5 hours compared to 0.858 using a conventional approach.
- Score: 8.80381582892208
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The cornerstone of stroke care is expedient management that varies depending
on the time since stroke onset. Consequently, clinical decision making is
centered on accurate knowledge of timing and often requires a radiologist to
interpret Computed Tomography (CT) of the brain to confirm the occurrence and
age of an event. These tasks are particularly challenging due to the subtle
expression of acute ischemic lesions and the dynamic nature of their
appearance. Automation efforts have not yet applied deep learning to estimate
lesion age and treated these two tasks independently, so, have overlooked their
inherent complementary relationship. To leverage this, we propose a novel
end-to-end multi-task transformer-based network optimized for concurrent
segmentation and age estimation of cerebral ischemic lesions. By utilizing
gated positional self-attention and CT-specific data augmentation, the proposed
method can capture long-range spatial dependencies while maintaining its
ability to be trained from scratch under low-data regimes commonly found in
medical imaging. Furthermore, to better combine multiple predictions, we
incorporate uncertainty by utilizing quantile loss to facilitate estimating a
probability density function of lesion age. The effectiveness of our model is
then extensively evaluated on a clinical dataset consisting of 776 CT images
from two medical centers. Experimental results demonstrate that our method
obtains promising performance, with an area under the curve (AUC) of 0.933 for
classifying lesion ages <=4.5 hours compared to 0.858 using a conventional
approach, and outperforms task-specific state-of-the-art algorithms.
Related papers
- Meta-Analysis of Transfer Learning for Segmentation of Brain Lesions [0.0]
Manual segmentation of stroke lesions from 3D magnetic resonance (MR) imaging volumes, the current gold standard, is not only very time-consuming, but its accuracy highly depends on the operator's experience.
We have implemented and tested a fully automatic method for stroke lesion segmentation using eight different 2D-model architectures trained via transfer learning (TL) and mixed data approaches.
Cross-validation results indicate that our new method can efficiently and automatically segment lesions fast and with high accuracy compared to ground truth.
arXiv Detail & Related papers (2023-06-20T17:42:30Z) - Automatic lesion analysis for increased efficiency in outcome prediction
of traumatic brain injury [12.651451007914124]
This work explores the predictive power of imaging biomarkers extracted from routinely-acquired hospital admission CT scans.
We use lesion volumes and corresponding lesion statistics as inputs for an extended TBI outcome prediction model.
We find that automatically extracted quantitative CT features perform similarly or better than the Marshall score in predicting unfavourable TBI outcomes.
arXiv Detail & Related papers (2022-08-08T13:18:35Z) - Assessing the Performance of Automated Prediction and Ranking of Patient
Age from Chest X-rays Against Clinicians [4.795478287106675]
Deep learning has been demonstrated to allow the accurate estimation of patient age from chest X-rays.
We present a novel comparative study of the performance of radiologists versus state-of-the-art deep learning models.
We train our models with a heterogeneous database of 1.8M chest X-rays with ground truth patient ages and investigate the limitations on model accuracy.
arXiv Detail & Related papers (2022-07-04T10:09:48Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - Dual-Consistency Semi-Supervised Learning with Uncertainty
Quantification for COVID-19 Lesion Segmentation from CT Images [49.1861463923357]
We propose an uncertainty-guided dual-consistency learning network (UDC-Net) for semi-supervised COVID-19 lesion segmentation from CT images.
Our proposed UDC-Net improves the fully supervised method by 6.3% in Dice and outperforms other competitive semi-supervised approaches by significant margins.
arXiv Detail & Related papers (2021-04-07T16:23:35Z) - Automated Detection of Coronary Artery Stenosis in X-ray Angiography
using Deep Neural Networks [0.0]
We propose a two-step deep-learning framework to partially automate the detection of stenosis from X-ray coronary angiography images.
We achieved a 0.97 accuracy on the task of classifying the Left/Right Coronary Artery angle view and 0.68/0.73 recall on the determination of the regions of interest, for LCA and RCA, respectively.
arXiv Detail & Related papers (2021-03-04T11:45:54Z) - Multiple Sclerosis Lesion Activity Segmentation with Attention-Guided
Two-Path CNNs [49.32653090178743]
convolutional neural networks (CNNs) are studied for lesion activity segmentation from two time points.
CNNs are designed and evaluated that combine the information from two points in different ways.
It is demonstrated that deep learning-based methods outperform classic approaches.
arXiv Detail & Related papers (2020-08-05T08:49:20Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z) - A comparative study of 2D image segmentation algorithms for traumatic
brain lesions using CT data from the ProTECTIII multicenter clinical trial [0.0]
We have tried to segment different phenotypes of hemorrhagic lesions found after traumatic brain injury (TBI)
These include: intraparenchymal hemorrhage (IPH), subdural hematoma (SDH), epidural hematoma (EDH), and traumatic contusions.
We were able to achieve an optimal Dice Coefficient1 score of 0.94 using UNet++ 2D Architecture with Focal Tversky Loss Function.
We were also able to achieve the Dice Coefficient score of 0.90 and 0.86 in cases of Extra-Axial bleeds and Traumatic contusions, respectively.
arXiv Detail & Related papers (2020-06-01T21:00:20Z) - Estimating Counterfactual Treatment Outcomes over Time Through
Adversarially Balanced Representations [114.16762407465427]
We introduce the Counterfactual Recurrent Network (CRN) to estimate treatment effects over time.
CRN uses domain adversarial training to build balancing representations of the patient history.
We show how our model achieves lower error in estimating counterfactuals and in choosing the correct treatment and timing of treatment.
arXiv Detail & Related papers (2020-02-10T20:47:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.