Multiple Sclerosis Lesion Activity Segmentation with Attention-Guided
Two-Path CNNs
- URL: http://arxiv.org/abs/2008.02001v1
- Date: Wed, 5 Aug 2020 08:49:20 GMT
- Title: Multiple Sclerosis Lesion Activity Segmentation with Attention-Guided
Two-Path CNNs
- Authors: Nils Gessert, Julia Kr\"uger, Roland Opfer, Ann-Christin Ostwaldt,
Praveena Manogaran, Hagen H. Kitzler, Sven Schippling, Alexander Schlaefer
- Abstract summary: convolutional neural networks (CNNs) are studied for lesion activity segmentation from two time points.
CNNs are designed and evaluated that combine the information from two points in different ways.
It is demonstrated that deep learning-based methods outperform classic approaches.
- Score: 49.32653090178743
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiple sclerosis is an inflammatory autoimmune demyelinating disease that
is characterized by lesions in the central nervous system. Typically, magnetic
resonance imaging (MRI) is used for tracking disease progression. Automatic
image processing methods can be used to segment lesions and derive quantitative
lesion parameters. So far, methods have focused on lesion segmentation for
individual MRI scans. However, for monitoring disease progression,
\textit{lesion activity} in terms of new and enlarging lesions between two time
points is a crucial biomarker. For this problem, several classic methods have
been proposed, e.g., using difference volumes. Despite their success for
single-volume lesion segmentation, deep learning approaches are still rare for
lesion activity segmentation. In this work, convolutional neural networks
(CNNs) are studied for lesion activity segmentation from two time points. For
this task, CNNs are designed and evaluated that combine the information from
two points in different ways. In particular, two-path architectures with
attention-guided interactions are proposed that enable effective information
exchange between the two time point's processing paths. It is demonstrated that
deep learning-based methods outperform classic approaches and it is shown that
attention-guided interactions significantly improve performance. Furthermore,
the attention modules produce plausible attention maps that have a masking
effect that suppresses old, irrelevant lesions. A lesion-wise false positive
rate of 26.4% is achieved at a true positive rate of 74.2%, which is not
significantly different from the interrater performance.
Related papers
- Longitudinal Segmentation of MS Lesions via Temporal Difference Weighting [2.0168790328644697]
We introduce a novel approach that explicitly incorporates temporal differences between baseline and follow-up scans through a unique architectural inductive bias called Difference Weighting Block.
We achieve superior scores in lesion segmentation as well as lesion detection as compared to state-of-the-art longitudinal and single timepoint models across two datasets.
arXiv Detail & Related papers (2024-09-20T11:30:54Z) - Meta-Analysis of Transfer Learning for Segmentation of Brain Lesions [0.0]
Manual segmentation of stroke lesions from 3D magnetic resonance (MR) imaging volumes, the current gold standard, is not only very time-consuming, but its accuracy highly depends on the operator's experience.
We have implemented and tested a fully automatic method for stroke lesion segmentation using eight different 2D-model architectures trained via transfer learning (TL) and mixed data approaches.
Cross-validation results indicate that our new method can efficiently and automatically segment lesions fast and with high accuracy compared to ground truth.
arXiv Detail & Related papers (2023-06-20T17:42:30Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - MS Lesion Segmentation: Revisiting Weighting Mechanisms for Federated
Learning [92.91544082745196]
Federated learning (FL) has been widely employed for medical image analysis.
FL's performance is limited for multiple sclerosis (MS) lesion segmentation tasks.
We propose the first FL MS lesion segmentation framework via two effective re-weighting mechanisms.
arXiv Detail & Related papers (2022-05-03T14:06:03Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - 4D Deep Learning for Multiple Sclerosis Lesion Activity Segmentation [49.32653090178743]
We investigate whether extending this problem to full 4D deep learning using a history of MRI volumes can improve performance.
We find that our proposed architecture outperforms previous approaches with a lesion-wise true positive rate of 0.84 at a lesion-wise false positive rate of 0.19.
arXiv Detail & Related papers (2020-04-20T11:41:01Z) - Weakly-Supervised Lesion Segmentation on CT Scans using Co-Segmentation [18.58056402884405]
Lesion segmentation on computed tomography (CT) scans is an important step for precisely monitoring changes in lesion/tumor growth.
Current practices rely on an imprecise substitute called response evaluation criteria in solid tumors.
This paper proposes a convolutional neural network based weakly-supervised lesion segmentation method.
arXiv Detail & Related papers (2020-01-23T15:15:53Z) - Spinal Metastases Segmentation in MR Imaging using Deep Convolutional
Neural Networks [0.0]
This study's objective was to segment spinal metastases in diagnostic MR images using a deep learning-based approach.
We used a U-Net like architecture trained with 40 clinical cases including both, lytic and sclerotic lesion types and various MR sequences.
Compared to expertly annotated lesion segmentations, the experiments yielded promising results with average Dice scores up to 77.6% and mean sensitivity rates up to 78.9%.
arXiv Detail & Related papers (2020-01-08T10:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.