Improving the performance of quantum cryptography by using the
encryption of the error correction data
- URL: http://arxiv.org/abs/2306.12347v1
- Date: Wed, 21 Jun 2023 15:42:54 GMT
- Title: Improving the performance of quantum cryptography by using the
encryption of the error correction data
- Authors: Valeria A. Pastushenko and Dmitry A. Kronberg
- Abstract summary: We introduce the idea of encrypting classical communication related to error-correction in order to decrease the amount of information available to the eavesdropper.
We analyze the applicability of the method in the context of additional assumptions concerning the eavesdropper's quantum memory coherence time.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Security of quantum key distribution (QKD) protocols relies solely on quantum
physics laws, namely, on the impossibility to distinguish between
non-orthogonal quantum states with absolute certainty. Due to this, a potential
eavesdropper cannot extract full information from the states stored in their
quantum memory after an attack despite knowing all the information disclosed
during classical post-processing stages of QKD. Here, we introduce the idea of
encrypting classical communication related to error-correction in order to
decrease the amount of information available to the eavesdropper and hence
improve the performance of quantum key distribution protocols. We analyze the
applicability of the method in the context of additional assumptions concerning
the eavesdropper's quantum memory coherence time and discuss the similarity of
our proposition and the quantum data locking (QDL) technique.
Related papers
- Increasing Interference Detection in Quantum Cryptography using the Quantum Fourier Transform [0.0]
We present two quantum cryptographic protocols leveraging the quantum Fourier transform (QFT)
The foremost of these protocols is a novel QKD method that leverages this effectiveness of the QFT.
We additionally show how existing quantum encryption methods can be augmented with a QFT-based approach to improve eavesdropping detection.
arXiv Detail & Related papers (2024-04-18T21:04:03Z) - Retrieving non-linear features from noisy quantum states [11.289924445850328]
In this paper, we analyze the feasibility and efficiency of extracting high-order moments from noisy states.
We first show that there exists a quantum protocol capable of accomplishing this task if and only if the underlying noise channel is invertible.
Our work contributes to a deeper understanding of how quantum noise could affect high-order information extraction and provides guidance on how to tackle it.
arXiv Detail & Related papers (2023-09-20T15:28:18Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Secure Key from Quantum Discord [22.97866257572447]
We show how to make use of discord to analyze security in a specific quantum cryptography protocol.
Our method is robust against imperfections in qubit sources and qubit measurements as well as basis misalignment due to quantum channels.
arXiv Detail & Related papers (2023-04-12T14:21:49Z) - Demonstration of Entanglement-Enhanced Covert Sensing [3.516093069612194]
We present the theory and experiment for entanglement-enhanced covert sensing.
We show that entanglement offers a performance boost in estimating the imparted phase by a probed object.
Our work is expected to create ample opportunities for quantum information processing at unprecedented security and performance levels.
arXiv Detail & Related papers (2022-05-25T16:20:34Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Anti-Forging Quantum Data: Cryptographic Verification of Quantum
Computational Power [1.9737117321211988]
Quantum cloud computing is emerging as a popular model for users to experience the power of quantum computing through the internet.
How can users be sure that the output strings sent by the server are really from a quantum hardware?
arXiv Detail & Related papers (2020-05-04T14:28:14Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z) - Quantum noise protects quantum classifiers against adversaries [120.08771960032033]
Noise in quantum information processing is often viewed as a disruptive and difficult-to-avoid feature, especially in near-term quantum technologies.
We show that by taking advantage of depolarisation noise in quantum circuits for classification, a robustness bound against adversaries can be derived.
This is the first quantum protocol that can be used against the most general adversaries.
arXiv Detail & Related papers (2020-03-20T17:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.