PriorBand: Practical Hyperparameter Optimization in the Age of Deep
Learning
- URL: http://arxiv.org/abs/2306.12370v2
- Date: Wed, 15 Nov 2023 17:06:57 GMT
- Title: PriorBand: Practical Hyperparameter Optimization in the Age of Deep
Learning
- Authors: Neeratyoy Mallik and Edward Bergman and Carl Hvarfner and Danny Stoll
and Maciej Janowski and Marius Lindauer and Luigi Nardi and Frank Hutter
- Abstract summary: We propose PriorBand, an HPO algorithm tailored to Deep Learning (DL) pipelines.
We show its robustness across a range of DL benchmarks and show its gains under informative expert input and against poor expert beliefs.
- Score: 49.92394599459274
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperparameters of Deep Learning (DL) pipelines are crucial for their
downstream performance. While a large number of methods for Hyperparameter
Optimization (HPO) have been developed, their incurred costs are often
untenable for modern DL. Consequently, manual experimentation is still the most
prevalent approach to optimize hyperparameters, relying on the researcher's
intuition, domain knowledge, and cheap preliminary explorations. To resolve
this misalignment between HPO algorithms and DL researchers, we propose
PriorBand, an HPO algorithm tailored to DL, able to utilize both expert beliefs
and cheap proxy tasks. Empirically, we demonstrate PriorBand's efficiency
across a range of DL benchmarks and show its gains under informative expert
input and robustness against poor expert beliefs
Related papers
- The Hitchhiker's Guide to Human Alignment with *PO [43.4130314879284]
We focus on identifying the algorithm that, while being performant, is simultaneously more robust to varying hyper parameters.
Our analysis reveals that the widely adopted DPO method consistently produces lengthy responses of inferior quality.
Motivated by these findings, we propose an embarrassingly simple extension to the DPO algorithm, LN-DPO, resulting in more concise responses without sacrificing quality.
arXiv Detail & Related papers (2024-07-21T17:35:20Z) - On the consistency of hyper-parameter selection in value-based deep reinforcement learning [13.133865673667394]
This paper conducts an empirical study focusing on the reliability of hyper- parameter selection for value-based deep reinforcement learning agents.
Our findings help establish which hyper- parameters are most critical to tune, and help clarify which tunings remain consistent across different training regimes.
arXiv Detail & Related papers (2024-06-25T13:06:09Z) - A Deep Dive into the Trade-Offs of Parameter-Efficient Preference Alignment Techniques [63.10251271444959]
Large language models are first pre-trained on trillions of tokens and then instruction-tuned or aligned to specific preferences.
We conduct an in-depth investigation of the impact of popular choices for three crucial axes.
Our setup spanning over 300 experiments reveals consistent trends and unexpected findings.
arXiv Detail & Related papers (2024-06-07T12:25:51Z) - Interactive Hyperparameter Optimization in Multi-Objective Problems via
Preference Learning [65.51668094117802]
We propose a human-centered interactive HPO approach tailored towards multi-objective machine learning (ML)
Instead of relying on the user guessing the most suitable indicator for their needs, our approach automatically learns an appropriate indicator.
arXiv Detail & Related papers (2023-09-07T09:22:05Z) - Hyperparameters in Reinforcement Learning and How To Tune Them [25.782420501870295]
We show that hyper parameter choices in deep reinforcement learning can significantly affect the agent's final performance and sample efficiency.
We propose adopting established best practices from AutoML, such as the separation of tuning and testing seeds.
We support this by comparing state-of-the-art HPO tools on a range of RL algorithms and environments to their hand-tuned counterparts.
arXiv Detail & Related papers (2023-06-02T07:48:18Z) - A New Linear Scaling Rule for Private Adaptive Hyperparameter Optimization [57.450449884166346]
We propose an adaptive HPO method to account for the privacy cost of HPO.
We obtain state-of-the-art performance on 22 benchmark tasks, across computer vision and natural language processing, across pretraining and finetuning.
arXiv Detail & Related papers (2022-12-08T18:56:37Z) - Towards Learning Universal Hyperparameter Optimizers with Transformers [57.35920571605559]
We introduce the OptFormer, the first text-based Transformer HPO framework that provides a universal end-to-end interface for jointly learning policy and function prediction.
Our experiments demonstrate that the OptFormer can imitate at least 7 different HPO algorithms, which can be further improved via its function uncertainty estimates.
arXiv Detail & Related papers (2022-05-26T12:51:32Z) - Efficient Hyperparameter Optimization for Differentially Private Deep
Learning [1.7205106391379026]
We formulate a general optimization framework for establishing a desirable privacy-utility tradeoff.
We study three cost-effective algorithms for being used in the proposed framework: evolutionary, Bayesian, and reinforcement learning.
As we believe our work has implications to be utilized in the pipeline of private deep learning, we open-source our code at https://github.com/AmanPriyanshu/DP-HyperparamTuning.
arXiv Detail & Related papers (2021-08-09T09:18:22Z) - Hyperparameter Optimization: Foundations, Algorithms, Best Practices and
Open Challenges [5.139260825952818]
This paper reviews important HPO methods such as grid or random search, evolutionary algorithms, Bayesian optimization, Hyperband and racing.
It gives practical recommendations regarding important choices to be made when conducting HPO, including the HPO algorithms themselves, performance evaluation, how to combine HPO with ML pipelines, runtime improvements, and parallelization.
arXiv Detail & Related papers (2021-07-13T04:55:47Z) - Cost-Efficient Online Hyperparameter Optimization [94.60924644778558]
We propose an online HPO algorithm that reaches human expert-level performance within a single run of the experiment.
Our proposed online HPO algorithm reaches human expert-level performance within a single run of the experiment, while incurring only modest computational overhead compared to regular training.
arXiv Detail & Related papers (2021-01-17T04:55:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.