On the consistency of hyper-parameter selection in value-based deep reinforcement learning
- URL: http://arxiv.org/abs/2406.17523v2
- Date: Tue, 2 Jul 2024 16:33:26 GMT
- Title: On the consistency of hyper-parameter selection in value-based deep reinforcement learning
- Authors: Johan Obando-Ceron, João G. M. Araújo, Aaron Courville, Pablo Samuel Castro,
- Abstract summary: This paper conducts an empirical study focusing on the reliability of hyper- parameter selection for value-based deep reinforcement learning agents.
Our findings help establish which hyper- parameters are most critical to tune, and help clarify which tunings remain consistent across different training regimes.
- Score: 13.133865673667394
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep reinforcement learning (deep RL) has achieved tremendous success on various domains through a combination of algorithmic design and careful selection of hyper-parameters. Algorithmic improvements are often the result of iterative enhancements built upon prior approaches, while hyper-parameter choices are typically inherited from previous methods or fine-tuned specifically for the proposed technique. Despite their crucial impact on performance, hyper-parameter choices are frequently overshadowed by algorithmic advancements. This paper conducts an extensive empirical study focusing on the reliability of hyper-parameter selection for value-based deep reinforcement learning agents, including the introduction of a new score to quantify the consistency and reliability of various hyper-parameters. Our findings not only help establish which hyper-parameters are most critical to tune, but also help clarify which tunings remain consistent across different training regimes.
Related papers
- Robustness of Algorithms for Causal Structure Learning to Hyperparameter
Choice [2.3020018305241337]
Hyper parameter tuning can make the difference between state-of-the-art and poor prediction performance for any algorithm.
We investigate the influence of hyper parameter selection on causal structure learning tasks.
arXiv Detail & Related papers (2023-10-27T15:34:08Z) - Hyperparameter Optimization for Multi-Objective Reinforcement Learning [0.27309692684728615]
Reinforcement learning (RL) has emerged as a powerful approach for tackling complex problems.
The recent introduction of multi-objective reinforcement learning (MORL) has further expanded the scope of RL.
In practice, this task often proves to be challenging, leading to unsuccessful deployments of these techniques.
arXiv Detail & Related papers (2023-10-25T09:17:25Z) - Hyperparameter Adaptive Search for Surrogate Optimization: A
Self-Adjusting Approach [1.6317061277457001]
Surrogate optimization (SO) algorithms have shown promise for optimizing expensive black-box functions.
Our approach identifies and modifies the most influential hyper parameters specific to each problem and SO approach.
Experimental results demonstrate the effectiveness of HASSO in enhancing the performance of various SO algorithms.
arXiv Detail & Related papers (2023-10-12T01:26:05Z) - PriorBand: Practical Hyperparameter Optimization in the Age of Deep
Learning [49.92394599459274]
We propose PriorBand, an HPO algorithm tailored to Deep Learning (DL) pipelines.
We show its robustness across a range of DL benchmarks and show its gains under informative expert input and against poor expert beliefs.
arXiv Detail & Related papers (2023-06-21T16:26:14Z) - Deep Ranking Ensembles for Hyperparameter Optimization [9.453554184019108]
We present a novel method that meta-learns neural network surrogates optimized for ranking the configurations' performances while modeling their uncertainty via ensembling.
In a large-scale experimental protocol comprising 12 baselines, 16 HPO search spaces and 86 datasets/tasks, we demonstrate that our method achieves new state-of-the-art results in HPO.
arXiv Detail & Related papers (2023-03-27T13:52:40Z) - Towards Learning Universal Hyperparameter Optimizers with Transformers [57.35920571605559]
We introduce the OptFormer, the first text-based Transformer HPO framework that provides a universal end-to-end interface for jointly learning policy and function prediction.
Our experiments demonstrate that the OptFormer can imitate at least 7 different HPO algorithms, which can be further improved via its function uncertainty estimates.
arXiv Detail & Related papers (2022-05-26T12:51:32Z) - AUTOMATA: Gradient Based Data Subset Selection for Compute-Efficient
Hyper-parameter Tuning [72.54359545547904]
We propose a gradient-based subset selection framework for hyper- parameter tuning.
We show that using gradient-based data subsets for hyper- parameter tuning achieves significantly faster turnaround times and speedups of 3$times$-30$times$.
arXiv Detail & Related papers (2022-03-15T19:25:01Z) - Towards Hyperparameter-free Policy Selection for Offline Reinforcement
Learning [10.457660611114457]
We show how to select between policies and value functions produced by different training algorithms in offline reinforcement learning.
We use BVFT [XJ21], a recent theoretical advance in value-function selection, and demonstrate their effectiveness in discrete-action benchmarks such as Atari.
arXiv Detail & Related papers (2021-10-26T20:12:11Z) - Online hyperparameter optimization by real-time recurrent learning [57.01871583756586]
Our framework takes advantage of the analogy between hyperparameter optimization and parameter learning in neural networks (RNNs)
It adapts a well-studied family of online learning algorithms for RNNs to tune hyperparameters and network parameters simultaneously.
This procedure yields systematically better generalization performance compared to standard methods, at a fraction of wallclock time.
arXiv Detail & Related papers (2021-02-15T19:36:18Z) - An Asymptotically Optimal Multi-Armed Bandit Algorithm and
Hyperparameter Optimization [48.5614138038673]
We propose an efficient and robust bandit-based algorithm called Sub-Sampling (SS) in the scenario of hyper parameter search evaluation.
We also develop a novel hyper parameter optimization algorithm called BOSS.
Empirical studies validate our theoretical arguments of SS and demonstrate the superior performance of BOSS on a number of applications.
arXiv Detail & Related papers (2020-07-11T03:15:21Z) - Rethinking the Hyperparameters for Fine-tuning [78.15505286781293]
Fine-tuning from pre-trained ImageNet models has become the de-facto standard for various computer vision tasks.
Current practices for fine-tuning typically involve selecting an ad-hoc choice of hyper parameters.
This paper re-examines several common practices of setting hyper parameters for fine-tuning.
arXiv Detail & Related papers (2020-02-19T18:59:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.