DGC-GNN: Leveraging Geometry and Color Cues for Visual Descriptor-Free 2D-3D Matching
- URL: http://arxiv.org/abs/2306.12547v2
- Date: Sun, 24 Mar 2024 18:00:57 GMT
- Title: DGC-GNN: Leveraging Geometry and Color Cues for Visual Descriptor-Free 2D-3D Matching
- Authors: Shuzhe Wang, Juho Kannala, Daniel Barath,
- Abstract summary: Matching 2D keypoints in an image to a sparse 3D point cloud of the scene without requiring visual descriptors has garnered increased interest.
We introduce DGC-GNN, a novel algorithm that exploits geometric and color cues to represent keypoints, thereby improving matching accuracy.
We evaluate DGC-GNN on both indoor and outdoor datasets, demonstrating that it not only doubles the accuracy of the state-of-the-art visual descriptor-free algorithm but also substantially narrows the performance gap between descriptor-based and descriptor-free methods.
- Score: 39.461400537109895
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Matching 2D keypoints in an image to a sparse 3D point cloud of the scene without requiring visual descriptors has garnered increased interest due to its low memory requirements, inherent privacy preservation, and reduced need for expensive 3D model maintenance compared to visual descriptor-based methods. However, existing algorithms often compromise on performance, resulting in a significant deterioration compared to their descriptor-based counterparts. In this paper, we introduce DGC-GNN, a novel algorithm that employs a global-to-local Graph Neural Network (GNN) that progressively exploits geometric and color cues to represent keypoints, thereby improving matching accuracy. Our procedure encodes both Euclidean and angular relations at a coarse level, forming the geometric embedding to guide the point matching. We evaluate DGC-GNN on both indoor and outdoor datasets, demonstrating that it not only doubles the accuracy of the state-of-the-art visual descriptor-free algorithm but also substantially narrows the performance gap between descriptor-based and descriptor-free methods.
Related papers
- NeuraLoc: Visual Localization in Neural Implicit Map with Dual Complementary Features [50.212836834889146]
We propose an efficient and novel visual localization approach based on the neural implicit map with complementary features.
Specifically, to enforce geometric constraints and reduce storage requirements, we implicitly learn a 3D keypoint descriptor field.
To further address the semantic ambiguity of descriptors, we introduce additional semantic contextual feature fields.
arXiv Detail & Related papers (2025-03-08T08:04:27Z) - A2-GNN: Angle-Annular GNN for Visual Descriptor-free Camera Relocalization [8.881372153385028]
This paper introduces the Angle-Annular Graph Neural Network (A2-GNN), a simple approach that efficiently learns robust geometric structural representations.
Our approach achieves state-of-the-art accuracy with low computational overhead among visual description-free methods.
arXiv Detail & Related papers (2025-02-27T12:25:30Z) - Point Cloud Denoising With Fine-Granularity Dynamic Graph Convolutional Networks [58.050130177241186]
Noise perturbations often corrupt 3-D point clouds, hindering downstream tasks such as surface reconstruction, rendering, and further processing.
This paper introduces finegranularity dynamic graph convolutional networks called GDGCN, a novel approach to denoising in 3-D point clouds.
arXiv Detail & Related papers (2024-11-21T14:19:32Z) - GSplatLoc: Grounding Keypoint Descriptors into 3D Gaussian Splatting for Improved Visual Localization [1.4466437171584356]
We propose a two-stage procedure that integrates dense and robust keypoint descriptors from the lightweight XFeat feature extractor into 3DGS.
In the second stage, the initial pose estimate is refined by minimizing the rendering-based photometric warp loss.
Benchmarking on widely used indoor and outdoor datasets demonstrates improvements over recent neural rendering-based localization methods.
arXiv Detail & Related papers (2024-09-24T23:18:32Z) - CheckerPose: Progressive Dense Keypoint Localization for Object Pose
Estimation with Graph Neural Network [66.24726878647543]
Estimating the 6-DoF pose of a rigid object from a single RGB image is a crucial yet challenging task.
Recent studies have shown the great potential of dense correspondence-based solutions.
We propose a novel pose estimation algorithm named CheckerPose, which improves on three main aspects.
arXiv Detail & Related papers (2023-03-29T17:30:53Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Exploiting Local Geometry for Feature and Graph Construction for Better
3D Point Cloud Processing with Graph Neural Networks [22.936590869919865]
We propose improvements in point representations and local neighborhood graph construction within the general framework of graph neural networks.
We show that the proposed network achieves faster training convergence, i.e. 40% less epochs for classification.
arXiv Detail & Related papers (2021-03-28T21:34:59Z) - Learning Geometry-Disentangled Representation for Complementary
Understanding of 3D Object Point Cloud [50.56461318879761]
We propose Geometry-Disentangled Attention Network (GDANet) for 3D image processing.
GDANet disentangles point clouds into contour and flat part of 3D objects, respectively denoted by sharp and gentle variation components.
Experiments on 3D object classification and segmentation benchmarks demonstrate that GDANet achieves the state-of-the-arts with fewer parameters.
arXiv Detail & Related papers (2020-12-20T13:35:00Z) - Learning to Segment 3D Point Clouds in 2D Image Space [20.119802932358333]
We show how to efficiently project 3D point clouds into a 2D image space.
Traditional 2D convolutional neural networks (CNNs) such as U-Net can be applied for segmentation.
arXiv Detail & Related papers (2020-03-12T03:18:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.