Fitted Value Iteration Methods for Bicausal Optimal Transport
- URL: http://arxiv.org/abs/2306.12658v2
- Date: Thu, 2 Nov 2023 01:24:36 GMT
- Title: Fitted Value Iteration Methods for Bicausal Optimal Transport
- Authors: Erhan Bayraktar, Bingyan Han
- Abstract summary: We develop a fitted value iteration (FVI) method to compute bicausal optimal transport (OT)
Based on the dynamic programming formulation, FVI adopts a function class to approximate the value functions in bicausal OT.
We demonstrate that multilayer neural networks with appropriate structures satisfy the crucial assumptions required in sample complexity proofs.
- Score: 4.459996749171579
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a fitted value iteration (FVI) method to compute bicausal optimal
transport (OT) where couplings have an adapted structure. Based on the dynamic
programming formulation, FVI adopts a function class to approximate the value
functions in bicausal OT. Under the concentrability condition and approximate
completeness assumption, we prove the sample complexity using (local)
Rademacher complexity. Furthermore, we demonstrate that multilayer neural
networks with appropriate structures satisfy the crucial assumptions required
in sample complexity proofs. Numerical experiments reveal that FVI outperforms
linear programming and adapted Sinkhorn methods in scalability as the time
horizon increases, while still maintaining acceptable accuracy.
Related papers
- Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Generative modeling of time-dependent densities via optimal transport
and projection pursuit [3.069335774032178]
We propose a cheap alternative to popular deep learning algorithms for temporal modeling.
Our method is highly competitive compared with state-of-the-art solvers.
arXiv Detail & Related papers (2023-04-19T13:50:13Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Contrastive Conditional Neural Processes [45.70735205041254]
Conditional Neural Processes(CNPs) bridge neural networks with probabilistic inference to approximate functions of Processes under meta-learning settings.
Two auxiliary contrastive branches are set up hierarchically, namely in-instantiation temporal contrastive learning(tt TCL) and cross-instantiation function contrastive learning(tt FCL)
We empirically show that tt TCL captures high-level abstraction of observations, whereas tt FCL helps identify underlying functions, which in turn provides more efficient representations.
arXiv Detail & Related papers (2022-03-08T10:08:45Z) - A Stochastic Bundle Method for Interpolating Networks [18.313879914379008]
We propose a novel method for training deep neural networks that are capable of driving the empirical loss to zero.
At each iteration our method constructs a maximum linear approximation, known as the bundle of the objective learning approximation.
arXiv Detail & Related papers (2022-01-29T23:02:30Z) - Efficient Semi-Implicit Variational Inference [65.07058307271329]
We propose an efficient and scalable semi-implicit extrapolational (SIVI)
Our method maps SIVI's evidence to a rigorous inference of lower gradient values.
arXiv Detail & Related papers (2021-01-15T11:39:09Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
Our algorithm generates a sequence of finite-dimensional random subspaces of functional space spanned by a set of draws from the experimenter's Gaussian Process.
Standard Bayesian optimisation is applied on each subspace, and the best solution found used as a starting point (origin) for the next subspace.
We test our algorithm in simulated and real-world experiments, namely blind function matching, finding the optimal precipitation-strengthening function for an aluminium alloy, and learning rate schedule optimisation for deep networks.
arXiv Detail & Related papers (2020-09-08T06:54:11Z) - Spatially Adaptive Inference with Stochastic Feature Sampling and
Interpolation [72.40827239394565]
We propose to compute features only at sparsely sampled locations.
We then densely reconstruct the feature map with an efficient procedure.
The presented network is experimentally shown to save substantial computation while maintaining accuracy over a variety of computer vision tasks.
arXiv Detail & Related papers (2020-03-19T15:36:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.