論文の概要: OptIForest: Optimal Isolation Forest for Anomaly Detection
- arxiv url: http://arxiv.org/abs/2306.12703v1
- Date: Thu, 22 Jun 2023 07:14:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-23 15:18:24.095285
- Title: OptIForest: Optimal Isolation Forest for Anomaly Detection
- Title(参考訳): optiforest: 異常検出のための最適孤立林
- Authors: Haolong Xiang, Xuyun Zhang, Hongsheng Hu, Lianyong Qi, Wanchun Dou,
Mark Dras, Amin Beheshti and Xiaolong Xu
- Abstract要約: 孤立林のメカニズムに基づくカテゴリーは、その単純さ、有効性、効率性から際立っている。
本稿では,分離効率の理論を確立し,分離木に対する最適分岐係数を決定する。
理論的基盤に基づいて,クラスタリングに基づく学習をハッシュに組み込んだ,実用的な最適孤立林 OptIForest を設計する。
- 参考スコア(独自算出の注目度): 19.38817835115542
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection plays an increasingly important role in various fields for
critical tasks such as intrusion detection in cybersecurity, financial risk
detection, and human health monitoring. A variety of anomaly detection methods
have been proposed, and a category based on the isolation forest mechanism
stands out due to its simplicity, effectiveness, and efficiency, e.g., iForest
is often employed as a state-of-the-art detector for real deployment. While the
majority of isolation forests use the binary structure, a framework LSHiForest
has demonstrated that the multi-fork isolation tree structure can lead to
better detection performance. However, there is no theoretical work answering
the fundamentally and practically important question on the optimal tree
structure for an isolation forest with respect to the branching factor. In this
paper, we establish a theory on isolation efficiency to answer the question and
determine the optimal branching factor for an isolation tree. Based on the
theoretical underpinning, we design a practical optimal isolation forest
OptIForest incorporating clustering based learning to hash which enables more
information to be learned from data for better isolation quality. The rationale
of our approach relies on a better bias-variance trade-off achieved by bias
reduction in OptIForest. Extensive experiments on a series of benchmarking
datasets for comparative and ablation studies demonstrate that our approach can
efficiently and robustly achieve better detection performance in general than
the state-of-the-arts including the deep learning based methods.
- Abstract(参考訳): 異常検出は、サイバーセキュリティにおける侵入検知、金融リスク検出、人間の健康モニタリングなど、様々な分野において重要な役割を担っている。
様々な異常検出手法が提案されており、分離林機構に基づくカテゴリーは、その単純さ、有効性、効率性から際立っている。
分離された森の大半はバイナリ構造を使っているが、LSHiForestフレームワークは、マルチフォークの分離ツリー構造がより良い検出性能をもたらすことを示した。
しかし,枝分かれ要因に関して,孤立林に最適な樹木構造について,根本的かつ実践的に重要な疑問に答える理論的研究はない。
本稿では,この問いに回答し,分離木に対する最適分岐係数を決定するための分離効率の理論を定式化する。
理論的基盤を基礎として,クラスタリングに基づく学習をハッシュに組み込むことで,データからより多くの情報を学習し,より優れたアイソレーション品質を実現する。
このアプローチの理論的根拠は、OptIForestのバイアス低減によって達成されるより優れたバイアス分散トレードオフに依存します。
比較・アブレーション研究のための一連のベンチマークデータセットに関する広範囲な実験により,本手法は,ディープラーニングに基づく手法を含む最先端技術よりも,より効率的に,かつロバストに検出性能を発揮できることが証明された。
関連論文リスト
- The Best of Both Worlds: On the Dilemma of Out-of-distribution Detection [75.65876949930258]
アウト・オブ・ディストリビューション(OOD)検出はモデル信頼性に不可欠である。
我々は,OODの一般化能力を秘かに犠牲にすることで,最先端手法のOOD検出性能が向上することを示す。
論文 参考訳(メタデータ) (2024-10-12T07:02:04Z) - Learning Deep Tree-based Retriever for Efficient Recommendation: Theory and Method [76.31185707649227]
効率的なレコメンデーションのために,Deep Tree-based Retriever (DTR)を提案する。
DTRは、トレーニングタスクを、同じレベルでツリーノード上のソフトマックスベースのマルチクラス分類としてフレーム化している。
非リーフノードのラベル付けによって引き起こされる準最適性を緩和するため、損失関数の補正法を提案する。
論文 参考訳(メタデータ) (2024-08-21T05:09:53Z) - A Satellite Band Selection Framework for Amazon Forest Deforestation Detection Task [0.5825410941577593]
森林伐採と伐採は年間数百万ヘクタールに影響を及ぼし、効果的な森林モニタリングのために政府や民間のイニシアチブを必要としている。
本研究では,Univariate Marginal Distribution Algorithm (UMDA) を用いてLandsat-8衛星からスペクトル帯域を選択する手法を提案する。
この選択はセマンティックセグメンテーションアーキテクチャであるDeepLabv3+をガイドし、パフォーマンスを向上させる。
論文 参考訳(メタデータ) (2024-04-03T11:47:20Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
根本原因局所化のためのマルチモーダル因果構造学習手法であるMulanを提案する。
ログ選択言語モデルを利用してログ表現学習を行い、ログシーケンスを時系列データに変換する。
また、モダリティの信頼性を評価し、最終因果グラフを共同学習するための新しいキーパフォーマンスインジケータ対応アテンション機構も導入する。
論文 参考訳(メタデータ) (2024-02-04T05:50:38Z) - Revisiting Out-of-distribution Robustness in NLP: Benchmark, Analysis,
and LLMs Evaluations [111.88727295707454]
本稿では,NLP分野におけるアウト・オブ・ディストリビューション(OOD)のロバスト性に関する研究を再検討する。
本稿では, 明確な分化と分散の困難さを保証するための, ベンチマーク構築プロトコルを提案する。
我々は,OODロバスト性の分析と評価のための事前学習言語モデルの実験を行った。
論文 参考訳(メタデータ) (2023-06-07T17:47:03Z) - AUTO: Adaptive Outlier Optimization for Online Test-Time OOD Detection [81.49353397201887]
オープンソースアプリケーションに機械学習モデルをデプロイするには、アウト・オブ・ディストリビューション(OOD)検出が不可欠だ。
我々は、未ラベルのオンラインデータをテスト時に直接利用してOOD検出性能を向上させる、テスト時OOD検出と呼ばれる新しいパラダイムを導入する。
本稿では,入出力フィルタ,IDメモリバンク,意味的に一貫性のある目的からなる適応外乱最適化(AUTO)を提案する。
論文 参考訳(メタデータ) (2023-03-22T02:28:54Z) - OpenOOD: Benchmarking Generalized Out-of-Distribution Detection [60.13300701826931]
アウト・オブ・ディストリビューション(OOD)検出は、安全クリティカルな機械学習アプリケーションにとって不可欠である。
この分野では現在、統一的で厳格に定式化され、包括的なベンチマークが欠けている。
関連フィールドで開発された30以上のメソッドを実装したOpenOODという,統一的で構造化されたシステムを構築します。
論文 参考訳(メタデータ) (2022-10-13T17:59:57Z) - What Makes Forest-Based Heterogeneous Treatment Effect Estimators Work? [1.1050303097572156]
両手法がL2損失下で同じパラメータと共起仮定で理解可能であることを示す。
ランダム化環境では、両方のアプローチはベンチマーク研究で新しいブレンドバージョンと同様に実行された。
論文 参考訳(メタデータ) (2022-06-21T12:45:07Z) - Comparative Study Between Distance Measures On Supervised Optimum-Path
Forest Classification [0.0]
Optimum-Path Forest (OPF) はグラフベースの方法論と距離測度を使ってノード間の弧を作り、そのため木の集合を作る。
本研究は,オプティカム・パス林の森林分類に応用された広範囲な距離測定に関する比較研究を提案する。
論文 参考訳(メタデータ) (2022-02-08T13:34:09Z) - MOOD: Multi-level Out-of-distribution Detection [13.207044902083057]
異常な入力がデプロイ中にモデルが失敗するのを防ぐには、分散アウト・ディストリビューション(OOD)検出が不可欠です。
動的かつ効率的なOOD推論のための中間分類器出力を利用する,新しいフレームワークであるマルチレベルアウトオブディストリビューション検出MOODを提案する。
MOODは、競合するOOD検出性能を維持しながら、推論における最大71.05%の計算削減を実現します。
論文 参考訳(メタデータ) (2021-04-30T02:18:31Z) - Interpretable Anomaly Detection with DIFFI: Depth-based Isolation Forest
Feature Importance [4.769747792846005]
異常検出(英: Anomaly Detection)は、歴史的データに対する異常な振る舞いを検出することを目的とした教師なし学習課題である。
孤立林は、異常検出の分野で最も広く採用されているアルゴリズムの1つである。
本稿では,森林のグローバルレベルと地域レベルの両方で特徴重要度を定義する手法を提案する。
論文 参考訳(メタデータ) (2020-07-21T22:19:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。