Towards Reliable Evaluation and Fast Training of Robust Semantic Segmentation Models
- URL: http://arxiv.org/abs/2306.12941v2
- Date: Tue, 16 Jul 2024 15:54:12 GMT
- Title: Towards Reliable Evaluation and Fast Training of Robust Semantic Segmentation Models
- Authors: Francesco Croce, Naman D Singh, Matthias Hein,
- Abstract summary: We propose several problem-specific novel attacks minimizing different metrics in accuracy and mIoU.
Surprisingly, existing attempts of adversarial training for semantic segmentation models turn out to be weak or even completely non-robust.
We show how recently proposed robust ImageNet backbones can be used to obtain adversarially robust semantic segmentation models with up to six times less training time for PASCAL-VOC and the more challenging ADE20k.
- Score: 47.03411822627386
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial robustness has been studied extensively in image classification, especially for the $\ell_\infty$-threat model, but significantly less so for related tasks such as object detection and semantic segmentation, where attacks turn out to be a much harder optimization problem than for image classification. We propose several problem-specific novel attacks minimizing different metrics in accuracy and mIoU. The ensemble of our attacks, SEA, shows that existing attacks severely overestimate the robustness of semantic segmentation models. Surprisingly, existing attempts of adversarial training for semantic segmentation models turn out to be weak or even completely non-robust. We investigate why previous adaptations of adversarial training to semantic segmentation failed and show how recently proposed robust ImageNet backbones can be used to obtain adversarially robust semantic segmentation models with up to six times less training time for PASCAL-VOC and the more challenging ADE20k. The associated code and robust models are available at https://github.com/nmndeep/robust-segmentation
Related papers
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
deep neural networks (DNNs) are vulnerable to slight adversarial perturbations.
We show that strong feature representation learning during training can significantly enhance the original model's robustness.
We propose MOREL, a multi-objective feature representation learning approach, encouraging classification models to produce similar features for inputs within the same class, despite perturbations.
arXiv Detail & Related papers (2024-10-02T16:05:03Z) - Learning to Generate Training Datasets for Robust Semantic Segmentation [37.9308918593436]
We propose a novel approach to improve the robustness of semantic segmentation techniques.
We design Robusta, a novel conditional generative adversarial network to generate realistic and plausible perturbed images.
Our results suggest that this approach could be valuable in safety-critical applications.
arXiv Detail & Related papers (2023-08-01T10:02:26Z) - On Evaluating the Adversarial Robustness of Semantic Segmentation Models [0.0]
A number of adversarial training approaches have been proposed as a defense against adversarial perturbation.
We show for the first time that a number of models in previous work that are claimed to be robust are in fact not robust at all.
We then evaluate simple adversarial training algorithms that produce reasonably robust models even under our set of strong attacks.
arXiv Detail & Related papers (2023-06-25T11:45:08Z) - SegPGD: An Effective and Efficient Adversarial Attack for Evaluating and
Boosting Segmentation Robustness [63.726895965125145]
Deep neural network-based image classifications are vulnerable to adversarial perturbations.
In this work, we propose an effective and efficient segmentation attack method, dubbed SegPGD.
Since SegPGD can create more effective adversarial examples, the adversarial training with our SegPGD can boost the robustness of segmentation models.
arXiv Detail & Related papers (2022-07-25T17:56:54Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z) - Overcoming Classifier Imbalance for Long-tail Object Detection with
Balanced Group Softmax [88.11979569564427]
We provide the first systematic analysis on the underperformance of state-of-the-art models in front of long-tail distribution.
We propose a novel balanced group softmax (BAGS) module for balancing the classifiers within the detection frameworks through group-wise training.
Extensive experiments on the very recent long-tail large vocabulary object recognition benchmark LVIS show that our proposed BAGS significantly improves the performance of detectors.
arXiv Detail & Related papers (2020-06-18T10:24:26Z) - Learning Fast and Robust Target Models for Video Object Segmentation [83.3382606349118]
Video object segmentation (VOS) is a highly challenging problem since the initial mask, defining the target object, is only given at test-time.
Most previous approaches fine-tune segmentation networks on the first frame, resulting in impractical frame-rates and risk of overfitting.
We propose a novel VOS architecture consisting of two network components.
arXiv Detail & Related papers (2020-02-27T21:58:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.