Improved Financial Forecasting via Quantum Machine Learning
- URL: http://arxiv.org/abs/2306.12965v2
- Date: Wed, 3 Apr 2024 23:01:53 GMT
- Title: Improved Financial Forecasting via Quantum Machine Learning
- Authors: Sohum Thakkar, Skander Kazdaghli, Natansh Mathur, Iordanis Kerenidis, André J. Ferreira-Martins, Samurai Brito,
- Abstract summary: Quantum algorithms have the potential to enhance machine learning across a variety of domains and applications.
In this work, we show how quantum machine learning can be used to improve financial forecasting.
- Score: 1.151731504874944
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum algorithms have the potential to enhance machine learning across a variety of domains and applications. In this work, we show how quantum machine learning can be used to improve financial forecasting. First, we use classical and quantum Determinantal Point Processes to enhance Random Forest models for churn prediction, improving precision by almost 6%. Second, we design quantum neural network architectures with orthogonal and compound layers for credit risk assessment, which match classical performance with significantly fewer parameters. Our results demonstrate that leveraging quantum ideas can effectively enhance the performance of machine learning, both today as quantum-inspired classical ML solutions, and even more in the future, with the advent of better quantum hardware.
Related papers
- Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Quantum Hamiltonian Embedding of Images for Data Reuploading Classifiers [0.9374652839580181]
One of the first considerations is the design of the quantum machine learning model itself.
Recent research has started questioning whether quantum advantage via speedup is the right goal for quantum machine learning.
In this paper, we take an alternative approach by incorporating the design of classical deep learning algorithms to the design of quantum neural networks.
arXiv Detail & Related papers (2024-07-19T06:31:22Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
We develop a quantum reservoir learning algorithm that harnesses the quantum dynamics of neutral-atom analog quantum computers to process data.
We experimentally implement the algorithm, achieving competitive performance across various categories of machine learning tasks.
Our findings demonstrate the potential of utilizing classically intractable quantum correlations for effective machine learning.
arXiv Detail & Related papers (2024-07-02T18:00:00Z) - Neural Quantum Embedding: Pushing the Limits of Quantum Supervised Learning [0.40964539027092917]
We present Neural Quantum Embedding (NQE), a method that efficiently optimize quantum embedding beyond the limitations of positive and trace-preserving maps.
NQE enhances the lower bound of the empirical risk, leading to substantial improvements in classification performance.
arXiv Detail & Related papers (2023-11-19T19:58:33Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Quantum neural networks force fields generation [0.0]
We design a quantum neural network architecture and apply it successfully to different molecules of growing complexity.
The quantum models exhibit larger effective dimension with respect to classical counterparts and can reach competitive performances.
arXiv Detail & Related papers (2022-03-09T12:10:09Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Quantum Machine Learning for Particle Physics using a Variational
Quantum Classifier [0.0]
We propose a novel hybrid variational quantum classifier that combines the quantum gradient descent method with steepest gradient descent to optimise the parameters of the network.
We find that this algorithm has a better learning outcome than a classical neural network or a quantum machine learning method trained with a non-quantum optimisation method.
arXiv Detail & Related papers (2020-10-14T18:05:49Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.