Quantum neural networks force fields generation
- URL: http://arxiv.org/abs/2203.04666v1
- Date: Wed, 9 Mar 2022 12:10:09 GMT
- Title: Quantum neural networks force fields generation
- Authors: Oriel Kiss, Francesco Tacchino, Sofia Vallecorsa and Ivano Tavernelli
- Abstract summary: We design a quantum neural network architecture and apply it successfully to different molecules of growing complexity.
The quantum models exhibit larger effective dimension with respect to classical counterparts and can reach competitive performances.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate molecular force fields are of paramount importance for the efficient
implementation of molecular dynamics techniques at large scales. In the last
decade, machine learning methods have demonstrated impressive performances in
predicting accurate values for energy and forces when trained on finite size
ensembles generated with ab initio techniques. At the same time, quantum
computers have recently started to offer new viable computational paradigms to
tackle such problems. On the one hand, quantum algorithms may notably be used
to extend the reach of electronic structure calculations. On the other hand,
quantum machine learning is also emerging as an alternative and promising path
to quantum advantage. Here we follow this second route and establish a direct
connection between classical and quantum solutions for learning neural network
potentials. To this end, we design a quantum neural network architecture and
apply it successfully to different molecules of growing complexity. The quantum
models exhibit larger effective dimension with respect to classical
counterparts and can reach competitive performances, thus pointing towards
potential quantum advantages in natural science applications via quantum
machine learning.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - A Quick Introduction to Quantum Machine Learning for Non-Practitioners [0.0]
The paper covers basic quantum mechanics principles, including superposition, phase space, and entanglement.
It also reviews classical deep learning concepts, such as artificial neural networks, gradient descent, and backpropagation.
An example problem demonstrates the potential advantages of quantum neural networks.
arXiv Detail & Related papers (2024-02-22T16:48:17Z) - Symmetry-invariant quantum machine learning force fields [0.0]
We design quantum neural networks that explicitly incorporate, as a data-inspired prior, an extensive set of physically relevant symmetries.
Our results suggest that molecular force fields generation can significantly profit from leveraging the framework of geometric quantum machine learning.
arXiv Detail & Related papers (2023-11-19T16:15:53Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Quantum Neural Network Classifiers: A Tutorial [1.4567067583556714]
We focus on quantum neural networks in the form of parameterized quantum circuits.
We will mainly discuss different structures and encoding strategies of quantum neural networks for supervised learning tasks.
benchmark their performance utilizing Yao.jl, a quantum simulation package written in Julia Language.
arXiv Detail & Related papers (2022-06-06T18:00:01Z) - Mutual Reinforcement between Neural Networks and Quantum Physics [0.0]
Quantum machine learning emerges from the symbiosis of quantum mechanics and machine learning.
The use of classical machine learning as a tool applied to quantum physics problems.
The design of a quantum neural network based on the dynamics of a quantum perceptron with the application of shortcuts to adiabaticity gives rise to a short operation time and robust performance.
arXiv Detail & Related papers (2021-05-27T16:20:50Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Reinforcement Learning with Quantum Variational Circuits [0.0]
This work explores the potential for quantum computing to facilitate reinforcement learning problems.
Specifically, we investigate the use of quantum variational circuits, a form of quantum machine learning.
Results indicate both hybrid and pure quantum variational circuit have the ability to solve reinforcement learning tasks with a smaller parameter space.
arXiv Detail & Related papers (2020-08-15T00:13:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.