論文の概要: Stock Price Prediction using Dynamic Neural Networks
- arxiv url: http://arxiv.org/abs/2306.12969v1
- Date: Sun, 18 Jun 2023 20:06:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-23 14:07:09.900441
- Title: Stock Price Prediction using Dynamic Neural Networks
- Title(参考訳): 動的ニューラルネットワークを用いた株価予測
- Authors: David Noel
- Abstract要約: 本稿では,日替わりの株価を予測するための時系列動的ニューラルネットワークの解析と実装について述べる。
ニューラルネットワークは、カオス的、非線形、そして一見ランダムなデータの基本パターンを識別する非通過能力を持っている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper will analyze and implement a time series dynamic neural network to
predict daily closing stock prices. Neural networks possess unsurpassed
abilities in identifying underlying patterns in chaotic, non-linear, and
seemingly random data, thus providing a mechanism to predict stock price
movements much more precisely than many current techniques. Contemporary
methods for stock analysis, including fundamental, technical, and regression
techniques, are conversed and paralleled with the performance of neural
networks. Also, the Efficient Market Hypothesis (EMH) is presented and
contrasted with Chaos theory using neural networks. This paper will refute the
EMH and support Chaos theory. Finally, recommendations for using neural
networks in stock price prediction will be presented.
- Abstract(参考訳): 本稿では,日替わり価格を予測する時系列動的ニューラルネットワークの解析と実装を行う。
ニューラルネットワークはカオス、非線形、一見ランダムなデータの基本パターンを識別する能力を有しており、現在の多くの技術よりもはるかに正確に株価の動きを予測するメカニズムを提供する。
基本技術、技術的手法、回帰手法を含むストック分析の現代的手法は、ニューラルネットワークのパフォーマンスと会話され、並列化される。
また、効率的な市場仮説(EMH)を提示し、ニューラルネットワークを用いたカオス理論と対比する。
本稿では,EMHを論じ,カオス理論を支持する。
最後に、株価予測にニューラルネットワークを使用するための推奨事項を示す。
関連論文リスト
- Enhancing Price Prediction in Cryptocurrency Using Transformer Neural
Network and Technical Indicators [0.5439020425819]
方法論は、技術指標、Performerニューラルネットワーク、BiLSTMの使用を統合する。
提案手法は、主要な暗号通貨の時間と日時に適用される。
論文 参考訳(メタデータ) (2024-03-06T10:53:12Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - The cross-sectional stock return predictions via quantum neural network
and tensor network [0.0]
本稿では,量子および量子に着想を得た機械学習アルゴリズムのストックリターン予測への応用について検討する。
本研究では、雑音の多い中間規模量子コンピュータに適したアルゴリズムである量子ニューラルネットワークと、量子に着想を得た機械学習アルゴリズムであるテンソルネットワークの性能を評価する。
論文 参考訳(メタデータ) (2023-04-25T00:05:13Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Neural Capacitance: A New Perspective of Neural Network Selection via
Edge Dynamics [85.31710759801705]
現在の実践は、性能予測のためのモデルトレーニングにおいて高価な計算コストを必要とする。
本稿では,学習中のシナプス接続(エッジ)上の制御ダイナミクスを解析し,ニューラルネットワーク選択のための新しいフレームワークを提案する。
我々のフレームワークは、ニューラルネットワークトレーニング中のバックプロパゲーションがシナプス接続の動的進化と等価であるという事実に基づいて構築されている。
論文 参考訳(メタデータ) (2022-01-11T20:53:15Z) - Generative Adversarial Network (GAN) and Enhanced Root Mean Square Error
(ERMSE): Deep Learning for Stock Price Movement Prediction [15.165487282631535]
本稿では,予測精度を向上し,ジェネレーティブ・アドバイサル・ネットワークを用いて誤差損失の予測を最小化することを目的とする。
The Generative Adversarial Network (GAN) has well performed on the enhanced root mean square error to LSTM。
論文 参考訳(メタデータ) (2021-11-30T18:38:59Z) - N-BEATS neural network for mid-term electricity load forecasting [8.430502131775722]
提案手法は,中期電力負荷予測問題の解決に有効であることを示す。
実装と訓練は簡単で、信号前処理は不要であり、予測バイアス低減機構を備えている。
実験的な研究によると、提案されたニューラルネットワークは、正確性と予測バイアスの両方の観点から、すべての競合より明らかに優れています。
論文 参考訳(メタデータ) (2020-09-24T21:48:08Z) - Stochastic Markov Gradient Descent and Training Low-Bit Neural Networks [77.34726150561087]
本稿では,量子化ニューラルネットワークのトレーニングに適用可能な離散最適化手法であるGradient Markov Descent (SMGD)を紹介する。
アルゴリズム性能の理論的保証と数値的な結果の促進を提供する。
論文 参考訳(メタデータ) (2020-08-25T15:48:15Z) - A Novel Ensemble Deep Learning Model for Stock Prediction Based on Stock
Prices and News [7.578363431637128]
本稿では、感情分析を用いて、複数のテキストデータソースから有用な情報を抽出し、将来のストックムーブメントを予測することを提案する。
ブレンディングアンサンブルモデルには、2つのレベルがある。第1レベルには、2つのリカレントニューラルネットワーク(RNN)、1つのLong-Short Term Memory Network(LSTM)、1つのGated Recurrent Units Network(GRU)が含まれる。
完全に接続されたニューラルネットワークは、予測精度をさらに向上するために、複数の個々の予測結果をアンサンブルするために使用される。
論文 参考訳(メタデータ) (2020-07-23T15:25:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。