Can Differentiable Decision Trees Enable Interpretable Reward Learning from Human Feedback?
- URL: http://arxiv.org/abs/2306.13004v6
- Date: Fri, 11 Oct 2024 03:23:07 GMT
- Title: Can Differentiable Decision Trees Enable Interpretable Reward Learning from Human Feedback?
- Authors: Akansha Kalra, Daniel S. Brown,
- Abstract summary: We propose and evaluate a novel approach for learning expressive and interpretable reward functions from preferences using Differentiable Decision Trees (DDTs)
Our experiments across several domains, including CartPole, Visual Gridworld environments and Atari games, provide evidence that the tree structure of our learned reward function is useful in determining the extent to which the reward function is aligned with human preferences.
- Score: 10.968490626773564
- License:
- Abstract: Reinforcement Learning from Human Feedback (RLHF) has emerged as a popular paradigm for capturing human intent to alleviate the challenges of hand-crafting the reward values. Despite the increasing interest in RLHF, most works learn black box reward functions that while expressive are difficult to interpret and often require running the whole costly process of RL before we can even decipher if these frameworks are actually aligned with human preferences. We propose and evaluate a novel approach for learning expressive and interpretable reward functions from preferences using Differentiable Decision Trees (DDTs). Our experiments across several domains, including CartPole, Visual Gridworld environments and Atari games, provide evidence that the tree structure of our learned reward function is useful in determining the extent to which the reward function is aligned with human preferences. We also provide experimental evidence that not only shows that reward DDTs can often achieve competitive RL performance when compared with larger capacity deep neural network reward functions but also demonstrates the diagnostic utility of our framework in checking alignment of learned reward functions. We also observe that the choice between soft and hard (argmax) output of reward DDT reveals a tension between wanting highly shaped rewards to ensure good RL performance, while also wanting simpler, more interpretable rewards. Videos and code, are available at: https://sites.google.com/view/ddt-rlhf
Related papers
- Few-shot In-Context Preference Learning Using Large Language Models [15.84585737510038]
Designing reward functions is a core component of reinforcement learning.
It can be exceedingly inefficient to learn rewards as they are often learned tabula rasa.
We propose In-Context Preference Learning (ICPL) to accelerate learning reward functions from preferences.
arXiv Detail & Related papers (2024-10-22T17:53:34Z) - REBEL: A Regularization-Based Solution for Reward Overoptimization in Robotic Reinforcement Learning from Human Feedback [61.54791065013767]
A misalignment between the reward function and user intentions, values, or social norms can be catastrophic in the real world.
Current methods to mitigate this misalignment work by learning reward functions from human preferences.
We propose a novel concept of reward regularization within the robotic RLHF framework.
arXiv Detail & Related papers (2023-12-22T04:56:37Z) - Deep Reinforcement Learning from Hierarchical Preference Design [99.46415116087259]
This paper shows by exploiting certain structures, one can ease the reward design process.
We propose a hierarchical reward modeling framework -- HERON for scenarios: (I) The feedback signals naturally present hierarchy; (II) The reward is sparse, but with less important surrogate feedback to help policy learning.
arXiv Detail & Related papers (2023-09-06T00:44:29Z) - Basis for Intentions: Efficient Inverse Reinforcement Learning using
Past Experience [89.30876995059168]
inverse reinforcement learning (IRL) -- inferring the reward function of an agent from observing its behavior.
This paper addresses the problem of IRL -- inferring the reward function of an agent from observing its behavior.
arXiv Detail & Related papers (2022-08-09T17:29:49Z) - Interpretable Preference-based Reinforcement Learning with
Tree-Structured Reward Functions [2.741266294612776]
We propose an online, active preference learning algorithm that constructs reward functions with the intrinsically interpretable, compositional structure of a tree.
We demonstrate sample-efficient learning of tree-structured reward functions in several environments, then harness the enhanced interpretability to explore and debug for alignment.
arXiv Detail & Related papers (2021-12-20T09:53:23Z) - Reward function shape exploration in adversarial imitation learning: an
empirical study [9.817069267241575]
In adversarial imitation learning algorithms (AILs), no true rewards are obtained from the environment for learning the strategy.
We design several representative reward function shapes and compare their performances by large-scale experiments.
arXiv Detail & Related papers (2021-04-14T08:21:49Z) - Information Directed Reward Learning for Reinforcement Learning [64.33774245655401]
We learn a model of the reward function that allows standard RL algorithms to achieve high expected return with as few expert queries as possible.
In contrast to prior active reward learning methods designed for specific types of queries, IDRL naturally accommodates different query types.
We support our findings with extensive evaluations in multiple environments and with different types of queries.
arXiv Detail & Related papers (2021-02-24T18:46:42Z) - Semi-supervised reward learning for offline reinforcement learning [71.6909757718301]
Training agents usually requires reward functions, but rewards are seldom available in practice and their engineering is challenging and laborious.
We propose semi-supervised learning algorithms that learn from limited annotations and incorporate unlabelled data.
In our experiments with a simulated robotic arm, we greatly improve upon behavioural cloning and closely approach the performance achieved with ground truth rewards.
arXiv Detail & Related papers (2020-12-12T20:06:15Z) - Understanding Learned Reward Functions [6.714172005695389]
We investigate techniques for interpreting learned reward functions.
In particular, we apply saliency methods to identify failure modes and predict the robustness of reward functions.
We find that learned reward functions often implement surprising algorithms that rely on contingent aspects of the environment.
arXiv Detail & Related papers (2020-12-10T18:19:48Z) - Learning to Utilize Shaping Rewards: A New Approach of Reward Shaping [71.214923471669]
Reward shaping is an effective technique for incorporating domain knowledge into reinforcement learning (RL)
In this paper, we consider the problem of adaptively utilizing a given shaping reward function.
Experiments in sparse-reward cartpole and MuJoCo environments show that our algorithms can fully exploit beneficial shaping rewards.
arXiv Detail & Related papers (2020-11-05T05:34:14Z) - Reward Machines: Exploiting Reward Function Structure in Reinforcement
Learning [22.242379207077217]
We show how to show the reward function's code to the RL agent so it can exploit the function's internal structure to learn optimal policies.
First, we propose reward machines, a type of finite state machine that supports the specification of reward functions.
We then describe different methodologies to exploit this structure to support learning, including automated reward shaping, task decomposition, and counterfactual reasoning with off-policy learning.
arXiv Detail & Related papers (2020-10-06T00:10:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.