Learning to Reason without External Rewards
- URL: http://arxiv.org/abs/2505.19590v1
- Date: Mon, 26 May 2025 07:01:06 GMT
- Title: Learning to Reason without External Rewards
- Authors: Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, Dawn Song,
- Abstract summary: Training large language models (LLMs) for complex reasoning via Reinforcement Learning with Verifiable Rewards (RLVR) is effective but limited by reliance on costly, domain-specific supervision.<n>We explore Reinforcement Learning from Internal Feedback (RLIF), a framework that enables LLMs to learn from intrinsic signals without external rewards or labeled data.<n>We propose Intuitor, an RLIF method that uses a model's own confidence, termed self-certainty, as its sole reward signal.
- Score: 100.27210579418562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training large language models (LLMs) for complex reasoning via Reinforcement Learning with Verifiable Rewards (RLVR) is effective but limited by reliance on costly, domain-specific supervision. We explore Reinforcement Learning from Internal Feedback (RLIF), a framework that enables LLMs to learn from intrinsic signals without external rewards or labeled data. We propose Intuitor, an RLIF method that uses a model's own confidence, termed self-certainty, as its sole reward signal. Intuitor replaces external rewards in Group Relative Policy Optimization (GRPO) with self-certainty scores, enabling fully unsupervised learning. Experiments demonstrate that Intuitor matches GRPO's performance on mathematical benchmarks while achieving superior generalization to out-of-domain tasks like code generation, without requiring gold solutions or test cases. Our findings show that intrinsic model signals can drive effective learning across domains, offering a scalable alternative to RLVR for autonomous AI systems where verifiable rewards are unavailable. Code is available at https://github.com/sunblaze-ucb/Intuitor
Related papers
- Rubrics as Rewards: Reinforcement Learning Beyond Verifiable Domains [8.143110220871614]
We introduce RaR, a framework that uses structured, checklist-style rubrics as interpretable reward signals.<n>By treating rubrics as structured reward signals, we show that RaR enables smaller-scale judge models to better align with human preferences.
arXiv Detail & Related papers (2025-07-23T17:57:55Z) - ReVeal: Self-Evolving Code Agents via Iterative Generation-Verification [6.983144806500892]
ReVeal is a multi-turn reinforcement learning framework that interleaves code generation with explicit self-verification and tool-based evaluation.<n>It fosters the co-evolution of a model's generation and verification capabilities through RL training, expanding the reasoning boundaries of the base model.<n>It also enables test-time scaling into deeper inference regimes, with code consistently evolving as the number of turns increases during inference.
arXiv Detail & Related papers (2025-06-13T03:41:04Z) - Consistent Paths Lead to Truth: Self-Rewarding Reinforcement Learning for LLM Reasoning [87.7836502955847]
We propose a novel self-rewarding reinforcement learning framework to enhance Large Language Model (LLM) reasoning.<n>Our key insight is that correct responses often exhibit consistent trajectory patterns in terms of model likelihood.<n>We introduce CoVo, an intrinsic reward mechanism that integrates Consistency and Volatility via a robust vector-space aggregation strategy.
arXiv Detail & Related papers (2025-06-10T12:40:39Z) - Writing-Zero: Bridge the Gap Between Non-verifiable Tasks and Verifiable Rewards [11.149294285483782]
We propose a unified RLVR-based training paradigm that bridges the gap between non-verifiable tasks and verifiable rewards.<n>We introduce a writing-principle-based pairwise Generative Reward Model (GenRM) and a novel Bootstrapped Relative Policy Optimization (BRPO) algorithm.<n>Our approach empowers LLMs to develop robust writing capabilities without supervised fine-tuning.
arXiv Detail & Related papers (2025-05-30T14:34:57Z) - Maximizing Confidence Alone Improves Reasoning [48.83927980325788]
RENT: Reinforcement Learning via Entropy Minimization is a fully unsupervised RL method that requires no external reward or ground-truth answers.<n>We find that by reinforcing the chains of thought that yield high model confidence on its generated answers, the model improves its reasoning ability.
arXiv Detail & Related papers (2025-05-28T17:59:37Z) - Bridging Supervised Learning and Reinforcement Learning in Math Reasoning [55.889740979706815]
Reinforcement Learning (RL) has played a central role in the recent surge of math abilities by enabling self-improvement through binary verifier signals.<n>In this work, we propose Negative-aware Fine-Tuning (NFT) -- a supervised approach that enables LLMs to reflect on their failures and improve autonomously with no external teachers.
arXiv Detail & Related papers (2025-05-23T17:17:40Z) - Effective and Transparent RAG: Adaptive-Reward Reinforcement Learning for Decision Traceability [16.87554947089102]
We propose ARENA, a transparent RAG generator framework trained via reinforcement learning (RL) with our proposed rewards.<n>Based on the structured generation and adaptive reward calculation, our RL-based training enables the model to identify key evidence, perform structured reasoning, and generate answers with interpretable decision traces.
arXiv Detail & Related papers (2025-05-19T15:40:29Z) - RLSR: Reinforcement Learning from Self Reward [0.0]
We show that large language models can effectively self-improve through self-judging without reference solutions.<n>Our experiments show that models can provide reliable reward signals without ground truth answers.<n>This work represents a significant step toward autonomous AI systems that continuously improve through self-directed learning.
arXiv Detail & Related papers (2025-05-12T23:51:04Z) - Absolute Zero: Reinforced Self-play Reasoning with Zero Data [61.46462130246158]
Reinforcement learning with verifiable rewards (RLVR) has shown promise in enhancing the reasoning capabilities of large language models.<n>We introduce the Absolute Zero Reasoner (AZR), a system that self-evolves its training curriculum and reasoning ability.<n>AZR achieves overall SOTA performance on coding and mathematical reasoning tasks, outperforming existing zero-setting models.
arXiv Detail & Related papers (2025-05-06T09:08:00Z) - Crossing the Reward Bridge: Expanding RL with Verifiable Rewards Across Diverse Domains [92.36624674516553]
Reinforcement learning with verifiable rewards (RLVR) has demonstrated significant success in enhancing mathematical reasoning and coding performance of large language models (LLMs)<n>We investigate the effectiveness and scalability of RLVR across diverse real-world domains including medicine, chemistry, psychology, economics, and education.<n>We utilize a generative scoring technique that yields soft, model-based reward signals to overcome limitations posed by binary verifications.
arXiv Detail & Related papers (2025-03-31T08:22:49Z) - CostNet: An End-to-End Framework for Goal-Directed Reinforcement
Learning [9.432068833600884]
Reinforcement Learning (RL) is a general framework concerned with an agent that seeks to maximize rewards in an environment.
There are two approaches, model-based and model-free reinforcement learning, that show concrete results in several disciplines.
This paper introduces a novel reinforcement learning algorithm for predicting the distance between two states in a Markov Decision Process.
arXiv Detail & Related papers (2022-10-03T21:16:14Z) - PsiPhi-Learning: Reinforcement Learning with Demonstrations using
Successor Features and Inverse Temporal Difference Learning [102.36450942613091]
We propose an inverse reinforcement learning algorithm, called emphinverse temporal difference learning (ITD)
We show how to seamlessly integrate ITD with learning from online environment interactions, arriving at a novel algorithm for reinforcement learning with demonstrations, called $Psi Phi$-learning.
arXiv Detail & Related papers (2021-02-24T21:12:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.