論文の概要: Prediction of Annual Snow Accumulation Using a Recurrent Graph
Convolutional Approach
- arxiv url: http://arxiv.org/abs/2306.13181v1
- Date: Thu, 22 Jun 2023 19:48:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-26 14:14:55.945337
- Title: Prediction of Annual Snow Accumulation Using a Recurrent Graph
Convolutional Approach
- Title(参考訳): リカレントグラフ畳み込み法による年間積雪量の予測
- Authors: Benjamin Zalatan, Maryam Rahnemoonfar
- Abstract要約: 近年、スノーレーダーのような空中レーダーセンサーは、垂直解像度の細かい大きな領域で内部の氷層を計測できることが示されている。
本研究では,グラフアテンションネットワークに基づくモデルを用いて,より大規模なデータセット上での入力データポイントの少ない年次積雪データポイントの予測を行った。
- 参考スコア(独自算出の注目度): 0.38073142980732994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The precise tracking and prediction of polar ice layers can unveil historic
trends in snow accumulation. In recent years, airborne radar sensors, such as
the Snow Radar, have been shown to be able to measure these internal ice layers
over large areas with a fine vertical resolution. In our previous work, we
found that temporal graph convolutional networks perform reasonably well in
predicting future snow accumulation when given temporal graphs containing deep
ice layer thickness. In this work, we experiment with a graph attention
network-based model and used it to predict more annual snow accumulation data
points with fewer input data points on a larger dataset. We found that these
large changes only very slightly negatively impacted performance.
- Abstract(参考訳): 極氷層の正確な追跡と予測は、積雪の歴史的傾向を明らかにすることができる。
近年、スノーレーダのような空中レーダーセンサーは、これらの内部氷層を細かな垂直分解能で大きな領域にわたって測定できることが示されている。
過去の研究では,深層氷層厚の時間グラフが与えられた場合,時間グラフ畳み込みネットワークは将来の積雪予測に適当に機能することがわかった。
本研究では,グラフアテンションネットワークに基づくモデルを用いて,より大規模なデータセット上での入力データポイントの少ない年次積雪データポイントの予測を行った。
これらの大きな変更がパフォーマンスにわずかに悪影響を及ぼすことがわかりました。
関連論文リスト
- Retrieving snow depth distribution by downscaling ERA5 Reanalysis with ICESat-2 laser altimetry [2.5124917269950324]
本研究は、ICESat-2衛星レーザー高度計による積雪深度測定を用いて、マイクロスケール(10m)で積雪深度マップを作成する。
積雪深とそれに対応するERA5ランド積雪深との関係を確立するために回帰モデルを適用した。
ERA5時間帯全体を対象とした月次積雪深図の時系列作成方法(1950年以降)
論文 参考訳(メタデータ) (2024-10-23T14:59:06Z) - Multi-modal graph neural networks for localized off-grid weather forecasting [3.890177521606208]
機械学習や数値気象モデルによる天気予報製品は、現在、グローバル・レギュラー・グリッドで作成されている。
本研究では、異種グラフニューラルネットワーク(GNN)をエンドツーエンドにトレーニングし、グリッド化された予測をダウンスケールして、関心のある場所をオフグリッドする。
提案手法は,グローバルな大規模気象モデルと局所的高精度な予測とのギャップを橋渡しして,局所的な意思決定に役立てることができることを示す。
論文 参考訳(メタデータ) (2024-10-16T18:25:43Z) - Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
都市全域にわたる地上監視ネットワークにおける大気質観測について検討する。
我々は過去と将来の共変分を現在の観測に埋め込む条件付きブロックを提案する。
将来の気象情報に対する条件付けは,過去の交通状況を考えるよりも影響が大きいことが判明した。
論文 参考訳(メタデータ) (2024-04-08T09:13:16Z) - Prediction of Deep Ice Layer Thickness Using Adaptive Recurrent Graph
Neural Networks [0.38073142980732994]
積雪予測に適応的かつ反復的なグラフ畳み込みネットワークを用いた機械学習モデルを提案する。
我々は,従来のモデルと同等の非時間的,非幾何学的,非適応的モデルよりも,より優れた一貫性を持つモデルを見出した。
論文 参考訳(メタデータ) (2023-06-22T19:59:54Z) - Recurrent Graph Convolutional Networks for Spatiotemporal Prediction of
Snow Accumulation Using Airborne Radar [0.38073142980732994]
本研究では,近年の積雪量予測のために,連続的なグラフ畳み込みネットワークに基づく機械学習モデルを提案する。
その結果、同値な非幾何学的モデルや非時間的モデルよりも、モデルの性能が良く、一貫性も高いことが判明した。
論文 参考訳(メタデータ) (2023-02-02T01:40:48Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Short-term precipitation prediction using deep learning [5.1589108738893215]
気象フィールドの1つのフレームを用いた3次元畳み込みニューラルネットワークは降水空間分布を予測することができることを示す。
このネットワークは、気象学の39年 (1980-2018) のデータと、連続した米国上空の毎日の降水に基づいて開発されている。
論文 参考訳(メタデータ) (2021-10-05T06:37:24Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
本稿では,複数の熱拡散カーネルをデータ駆動予測モデルにマージして交通信号を予測する交通伝搬モデルを提案する。
予測誤差を最小限に抑えるためにベイズ推定を用いてモデルパラメータを最適化し,2つの手法の混合率を決定する。
提案モデルでは,計算労力の少ない最先端のディープニューラルネットワークに匹敵する予測精度を示す。
論文 参考訳(メタデータ) (2021-04-27T18:17:42Z) - SLPC: a VRNN-based approach for stochastic lidar prediction and
completion in autonomous driving [63.87272273293804]
VRNN(Variiational Recurrent Neural Networks)と呼ばれる生成モデルに基づく新しいLiDAR予測フレームワークを提案する。
提案手法は,フレーム内の奥行きマップを空間的に塗り替えることで,スパースデータを扱う際の従来のビデオ予測フレームワークの限界に対処できる。
VRNNのスパースバージョンとラベルを必要としない効果的な自己監督型トレーニング方法を紹介します。
論文 参考訳(メタデータ) (2021-02-19T11:56:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。