論文の概要: Optimal Cost-Preference Trade-off Planning with Multiple Temporal Tasks
- arxiv url: http://arxiv.org/abs/2306.13222v1
- Date: Thu, 22 Jun 2023 21:56:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-26 14:05:14.168281
- Title: Optimal Cost-Preference Trade-off Planning with Multiple Temporal Tasks
- Title(参考訳): 複数の時間的タスクを用いた最適コスト・プリファレンストレードオフ計画
- Authors: Peter Amorese and Morteza Lahijanian
- Abstract要約: 個別のタスクやその関係性よりも好みを表現できる汎用的な枠組みを提供する新しい選好概念を導入する。
我々は,ユーザの好みに従属する行動と,リソース最適である行動の最適トレードオフ(Pareto)分析を行う。
- 参考スコア(独自算出の注目度): 3.655021726150368
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous robots are increasingly utilized in realistic scenarios with
multiple complex tasks. In these scenarios, there may be a preferred way of
completing all of the given tasks, but it is often in conflict with optimal
execution. Recent work studies preference-based planning, however, they have
yet to extend the notion of preference to the behavior of the robot with
respect to each task. In this work, we introduce a novel notion of preference
that provides a generalized framework to express preferences over individual
tasks as well as their relations. Then, we perform an optimal trade-off
(Pareto) analysis between behaviors that adhere to the user's preference and
the ones that are resource optimal. We introduce an efficient planning
framework that generates Pareto-optimal plans given user's preference by
extending A* search. Further, we show a method of computing the entire Pareto
front (the set of all optimal trade-offs) via an adaptation of a
multi-objective A* algorithm. We also present a problem-agnostic search
heuristic to enable scalability. We illustrate the power of the framework on
both mobile robots and manipulators. Our benchmarks show the effectiveness of
the heuristic with up to 2-orders of magnitude speedup.
- Abstract(参考訳): 自律ロボットは、複数の複雑なタスクを持つ現実的なシナリオでますます活用されている。
これらのシナリオでは、与えられたタスクをすべて完了する方法が好まれるかもしれないが、しばしば最適な実行と矛盾する。
しかし、近年の研究では、ロボットの行動に対する嗜好の概念を各タスクに対して拡張していない。
本稿では,個々のタスクに対する嗜好を表現し,その関係性を表現するためのフレームワークとして,新しい選好概念を導入する。
次に,ユーザの嗜好に準拠した行動と資源最適行動との間に最適なトレードオフ(pareto)分析を行う。
a*検索を拡張してユーザの好みに応じてパレートオプティマイズプランを生成する効率的なプランニングフレームワークを提案する。
さらに,多目的a*アルゴリズムの適応により,パレートフロント全体(すべての最適トレードオフの集合)を計算する方法を示す。
また,スケーラビリティを実現するために,問題に依存しない検索ヒューリスティックを提案する。
移動ロボットとマニピュレータの両方におけるフレームワークのパワーについて説明する。
我々のベンチマークでは、最大2桁のスピードアップによるヒューリスティックの有効性を示している。
関連論文リスト
- Preferential Multi-Objective Bayesian Optimization [46.265078006749576]
本稿では,本アルゴリズムの一般化であるスカラー化トンプソンサンプリング(DSTS)について述べる。
DSTSを4つの合成試験関数と2つの模擬外骨格のパーソナライゼーションおよび駆動ポリシー設計タスクで評価した。
直接的な結果として、この結果は私たちの知る限り、PBO設定におけるデュエルトンプソンサンプリングに対する最初の収束保証を提供する。
論文 参考訳(メタデータ) (2024-06-20T19:44:37Z) - Online Pareto-Optimal Decision-Making for Complex Tasks using Active Inference [14.470714123175972]
本稿では,多目的強化学習のための新しいフレームワークを提案する。
安全なタスク実行を保証し、目的間のトレードオフを最適化し、ユーザの好みに準拠します。
操作と移動ロボットのケーススタディとベンチマークは、我々のフレームワークが他の方法よりも優れていることを示している。
論文 参考訳(メタデータ) (2024-06-17T18:03:45Z) - Cooperative Bayesian Optimization for Imperfect Agents [32.15315995944448]
2つのエージェントは、関数を問合せするポイントを一緒に選ぶが、それぞれ1つの変数だけを制御する。
提案手法を逐次意思決定として定式化し,制御するエージェントは,関数に関する事前知識を持つ計算的合理的なエージェントとしてユーザをモデル化する。
本研究では,ユーザが過剰な探索を避ける限り,クエリの戦略的計画により,関数のグローバルな最大値の同定がより容易であることを示す。
論文 参考訳(メタデータ) (2024-03-07T12:16:51Z) - Multi-Objective Bayesian Optimization with Active Preference Learning [18.066263838953223]
本稿では,多目的最適化 (MOO) 問題において最も望ましい解を特定するためのベイズ最適化 (BO) 手法を提案する。
また、意思決定者(DM)との相互作用コストを最小限に抑えるため、選好推定のためのアクティブラーニング戦略を提案する。
論文 参考訳(メタデータ) (2023-11-22T15:24:36Z) - MultiZenoTravel: a Tunable Benchmark for Multi-Objective Planning with
Known Pareto Front [71.19090689055054]
多目的AI計画では、既知のPareto Frontsを示すベンチマークが不足している。
提案するベンチマーク生成器と専用ソルバは、結果のインスタンスの真のParetoを確実に計算する。
本稿では,制約された問題に対して最適な計画を示すとともに,制約された問題に対する一般的な問題を減らす方法を示す。
論文 参考訳(メタデータ) (2023-04-28T07:09:23Z) - Planning-oriented Autonomous Driving [60.93767791255728]
我々は、最終目標、すなわち自動運転車の計画を追求するために、好ましいフレームワークを考案し、最適化すべきであると主張している。
フルスタック運転タスクをひとつのネットワークに組み込んだ総合的なフレームワークであるUnified Autonomous Driving (UniAD)を紹介した。
論文 参考訳(メタデータ) (2022-12-20T10:47:53Z) - Pareto Manifold Learning: Tackling multiple tasks via ensembles of
single-task models [50.33956216274694]
マルチタスク学習(MTL)では、タスクは、ソリューションへの最適化を導くのではなく、互いに達成したパフォーマンスを競い、制限することができる。
重み空間におけるアンサンブル手法であるTextitPareto Manifold Learningを提案する。
論文 参考訳(メタデータ) (2022-10-18T11:20:54Z) - Pre-training helps Bayesian optimization too [49.28382118032923]
機能的事前設定のための代替的なプラクティスを模索する。
特に、より厳密な分布を事前訓練できるような、類似した関数のデータを持つシナリオを考察する。
提案手法は, 競合する手法の少なくとも3倍の効率で, 優れたハイパーパラメータを見つけることができることを示す。
論文 参考訳(メタデータ) (2022-07-07T04:42:54Z) - Pareto Navigation Gradient Descent: a First-Order Algorithm for
Optimization in Pareto Set [17.617944390196286]
マルチタスク学習のような現代の機械学習アプリケーションは、複数の目的関数をトレードオフするために最適なモデルパラメータを見つける必要がある。
勾配情報のみを用いてOPT-in-Paretoを近似的に解く1次アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-10-17T04:07:04Z) - Exploring Relational Context for Multi-Task Dense Prediction [76.86090370115]
我々は,共通バックボーンと独立タスク固有のヘッドで表される,密集予測タスクのためのマルチタスク環境を考える。
マルチタスク設定では,グローバルやローカルなど,さまざまな注意に基づくコンテキストを探索する。
タスクペアごとに利用可能なすべてのコンテキストのプールをサンプリングするAdaptive Task-Relational Contextモジュールを提案する。
論文 参考訳(メタデータ) (2021-04-28T16:45:56Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
本稿では,不確実性およびマルチエージェント協調の下での逐次意思決定における重要な計算課題を分離するマルチロボット割当アルゴリズムを提案する。
都市におけるマルチアームコンベヤベルトピック・アンド・プレイスとマルチドローン配送ディスパッチの2つの異なる領域における広範囲なシミュレーション結果について検証を行った。
論文 参考訳(メタデータ) (2020-05-27T01:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。