論文の概要: On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis
- arxiv url: http://arxiv.org/abs/2306.13276v1
- Date: Fri, 23 Jun 2023 03:09:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-26 13:46:00.491827
- Title: On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis
- Title(参考訳): 自動mr画像診断における入力分布シフトに対する正規化スキームの感度とロバスト性について
- Authors: Divyam Madaan, Daniel Sodickson, Kyunghyun Cho, Sumit Chopra
- Abstract要約: 深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
- 参考スコア(独自算出の注目度): 58.634791552376235
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Magnetic Resonance Imaging (MRI) is considered the gold standard of medical
imaging because of the excellent soft-tissue contrast exhibited in the images
reconstructed by the MRI pipeline, which in-turn enables the human radiologist
to discern many pathologies easily. More recently, Deep Learning (DL) models
have also achieved state-of-the-art performance in diagnosing multiple diseases
using these reconstructed images as input. However, the image reconstruction
process within the MRI pipeline, which requires the use of complex hardware and
adjustment of a large number of scanner parameters, is highly susceptible to
noise of various forms, resulting in arbitrary artifacts within the images.
Furthermore, the noise distribution is not stationary and varies within a
machine, across machines, and patients, leading to varying artifacts within the
images. Unfortunately, DL models are quite sensitive to these varying artifacts
as it leads to changes in the input data distribution between the training and
testing phases. The lack of robustness of these models against varying
artifacts impedes their use in medical applications where safety is critical.
In this work, we focus on improving the generalization performance of these
models in the presence of multiple varying artifacts that manifest due to the
complexity of the MR data acquisition. In our experiments, we observe that
Batch Normalization, a widely used technique during the training of DL models
for medical image analysis, is a significant cause of performance degradation
in these changing environments. As a solution, we propose to use other
normalization techniques, such as Group Normalization and Layer Normalization
(LN), to inject robustness into model performance against varying image
artifacts. Through a systematic set of experiments, we show that GN and LN
provide better accuracy for various MR artifacts and distribution shifts.
- Abstract(参考訳): MRI(MRI)はMRIパイプラインで再構成した画像に優れた軟質のコントラストが示されており、ヒトの放射線技師が容易に多くの病態を判別できるため、医療画像の標準として金色であると考えられている。
最近では、これらの再構成画像を入力として、複数の疾患の診断において、Deep Learning(DL)モデルも最先端のパフォーマンスを達成した。
しかし、複雑なハードウェアの使用と多数のスキャナパラメータの調整を必要とするMRIパイプライン内の画像再構成プロセスは、様々な形態のノイズの影響を受けやすいため、画像内の任意のアーティファクトが生じる。
さらに、ノイズの分布は定常的ではなく、マシン内、マシン間、患者間で変化し、画像内のさまざまなアーティファクトに繋がる。
残念なことに、DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、これらのさまざまなアーティファクトに対して非常に敏感です。
これらのモデルのさまざまなアーティファクトに対する堅牢性の欠如は、安全が重要となる医療応用における使用を妨げる。
本研究は,MRデータ取得の複雑さに起因する多種多様なアーティファクトの存在下で,これらのモデルの一般化性能の向上に焦点を当てる。
本実験では,医療画像解析のためのdlモデルのトレーニングにおいて広く用いられているバッチ正規化が,これらの変化環境における性能低下の重要な原因であると考えられる。
そこで本研究では,グループ正規化やレイヤ正規化(LN)といった他の正規化手法を用いて,様々な画像アーチファクトに対してモデル性能にロバスト性を注入する手法を提案する。
系統的な実験を通して、GNとLNは様々なMRアーチファクトと分布シフトに対してより良い精度を提供することを示す。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Multiscale Latent Diffusion Model for Enhanced Feature Extraction from Medical Images [5.395912799904941]
CTスキャナーモデルと取得プロトコルのバリエーションは、抽出した放射能特性に有意な変動をもたらす。
LTDiff++は医療画像の特徴抽出を強化するために設計されたマルチスケール潜在拡散モデルである。
論文 参考訳(メタデータ) (2024-10-05T02:13:57Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Interpretability Aware Model Training to Improve Robustness against
Out-of-Distribution Magnetic Resonance Images in Alzheimer's Disease
Classification [8.050897403457995]
異なるMRIハードウェアから派生した分布外サンプルに対するロバスト性を改善するために,解釈可能性を考慮した対向訓練システムを提案する。
本報告では, 分布外のサンプルに対して有望な性能を示す予備的な結果を示す。
論文 参考訳(メタデータ) (2021-11-15T04:42:47Z) - Multimodal-Boost: Multimodal Medical Image Super-Resolution using
Multi-Attention Network with Wavelet Transform [5.416279158834623]
対応する画像分解能の喪失は、医用画像診断の全体的な性能を低下させる。
ディープラーニングベースのシングルイメージスーパーレゾリューション(SISR)アルゴリズムは、全体的な診断フレームワークに革命をもたらした。
本研究は,低周波データから高頻度情報を学習する深層マルチアテンションモジュールを用いたGAN(Generative Adversarial Network)を提案する。
論文 参考訳(メタデータ) (2021-10-22T10:13:46Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z) - Robust Image Reconstruction with Misaligned Structural Information [0.27074235008521236]
再建と登録を共同で行う変分フレームワークを提案する。
我々のアプローチは、異なるモダリティに対してこれを最初に達成し、再構築と登録の両方の精度で確立されたアプローチを上回ります。
論文 参考訳(メタデータ) (2020-04-01T17:21:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。