Deep Omni-supervised Learning for Rib Fracture Detection from Chest
Radiology Images
- URL: http://arxiv.org/abs/2306.13301v2
- Date: Sat, 20 Jan 2024 02:44:31 GMT
- Title: Deep Omni-supervised Learning for Rib Fracture Detection from Chest
Radiology Images
- Authors: Zhizhong Chai, Luyang Luo, Huangjing Lin, Pheng-Ann Heng, and Hao Chen
- Abstract summary: Deep learning (DL)-based rib fracture detection has shown promise of playing an important role in preventing mortality and improving patient outcome.
DL-based object detection models requires a huge amount of bounding box annotation.
Annotating medical data is time-consuming and expertise-demanding, making obtaining a large amount of fine-grained annotations extremely infeasible.
We present a novel omni-supervised object detection network, ORF-Netv2, to leverage as much available supervision as possible.
- Score: 41.62893318123283
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning (DL)-based rib fracture detection has shown promise of playing
an important role in preventing mortality and improving patient outcome.
Normally, developing DL-based object detection models requires a huge amount of
bounding box annotation. However, annotating medical data is time-consuming and
expertise-demanding, making obtaining a large amount of fine-grained
annotations extremely infeasible. This poses a pressing need {for} developing
label-efficient detection models to alleviate radiologists' labeling burden. To
tackle this challenge, the literature on object detection has witnessed an
increase of weakly-supervised and semi-supervised approaches, yet still lacks a
unified framework that leverages various forms of fully-labeled,
weakly-labeled, and unlabeled data. In this paper, we present a novel
omni-supervised object detection network, ORF-Netv2, to leverage as much
available supervision as possible. Specifically, a multi-branch omni-supervised
detection head is introduced with each branch trained with a specific type of
supervision. A co-training-based dynamic label assignment strategy is then
proposed to enable flexible and robust learning from the weakly-labeled and
unlabeled data. Extensive evaluation was conducted for the proposed framework
with three rib fracture datasets on both chest CT and X-ray. By leveraging all
forms of supervision, ORF-Netv2 achieves mAPs of 34.7, 44.7, and 19.4 on the
three datasets, respectively, surpassing the baseline detector which uses only
box annotations by mAP gains of 3.8, 4.8, and 5.0, respectively. Furthermore,
ORF-Netv2 consistently outperforms other competitive label-efficient methods
over various scenarios, showing a promising framework for label-efficient
fracture detection. The code is available at:
https://github.com/zhizhongchai/ORF-Net.
Related papers
- KECOR: Kernel Coding Rate Maximization for Active 3D Object Detection [48.66703222700795]
We resort to a novel kernel strategy to identify the most informative point clouds to acquire labels.
To accommodate both one-stage (i.e., SECOND) and two-stage detectors, we incorporate the classification entropy tangent and well trade-off between detection performance and the total number of bounding boxes selected for annotation.
Our results show that approximately 44% box-level annotation costs and 26% computational time are reduced compared to the state-of-the-art method.
arXiv Detail & Related papers (2023-07-16T04:27:03Z) - An End-to-End Framework For Universal Lesion Detection With Missing
Annotations [24.902835211573628]
We present a novel end-to-end framework for mining unlabeled lesions while simultaneously training the detector.
Our framework follows the teacher-student paradigm. High-confidence predictions are combined with partially-labeled ground truth for training the student model.
arXiv Detail & Related papers (2023-03-27T09:16:10Z) - Augment and Criticize: Exploring Informative Samples for Semi-Supervised
Monocular 3D Object Detection [64.65563422852568]
We improve the challenging monocular 3D object detection problem with a general semi-supervised framework.
We introduce a novel, simple, yet effective Augment and Criticize' framework that explores abundant informative samples from unlabeled data.
The two new detectors, dubbed 3DSeMo_DLE and 3DSeMo_FLEX, achieve state-of-the-art results with remarkable improvements for over 3.5% AP_3D/BEV (Easy) on KITTI.
arXiv Detail & Related papers (2023-03-20T16:28:15Z) - ORF-Net: Deep Omni-supervised Rib Fracture Detection from Chest CT Scans [47.7670302148812]
radiologists need to investigate and annotate rib fractures on a slice-by-slice basis.
We propose a novel omni-supervised object detection network, which can exploit multiple different forms of annotated data.
Our proposed method outperforms other state-of-the-art approaches consistently.
arXiv Detail & Related papers (2022-07-05T07:06:57Z) - Semi-supervised Anatomical Landmark Detection via Shape-regulated
Self-training [37.691539309804426]
Well-annotated medical images are costly and sometimes even impossible to acquire, hindering landmark detection accuracy to some extent.
We propose a model-agnostic shape-regulated self-training framework for semi-supervised landmark detection.
Our framework is flexible and can be used as a plug-and-play module integrated into most supervised methods to improve performance further.
arXiv Detail & Related papers (2021-05-28T05:23:07Z) - Unsupervised Object Detection with LiDAR Clues [70.73881791310495]
We present the first practical method for unsupervised object detection with the aid of LiDAR clues.
In our approach, candidate object segments based on 3D point clouds are firstly generated.
Then, an iterative segment labeling process is conducted to assign segment labels and to train a segment labeling network.
The labeling process is carefully designed so as to mitigate the issue of long-tailed and open-ended distribution.
arXiv Detail & Related papers (2020-11-25T18:59:54Z) - EHSOD: CAM-Guided End-to-end Hybrid-Supervised Object Detection with
Cascade Refinement [53.69674636044927]
We present EHSOD, an end-to-end hybrid-supervised object detection system.
It can be trained in one shot on both fully and weakly-annotated data.
It achieves comparable results on multiple object detection benchmarks with only 30% fully-annotated data.
arXiv Detail & Related papers (2020-02-18T08:04:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.