論文の概要: Co-creating a globally interpretable model with human input
- arxiv url: http://arxiv.org/abs/2306.13381v1
- Date: Fri, 23 Jun 2023 09:03:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-26 13:16:52.247959
- Title: Co-creating a globally interpretable model with human input
- Title(参考訳): 人間の入力による世界的解釈可能なモデルの作成
- Authors: Rahul Nair
- Abstract要約: 我々は,共同解釈可能なモデルを作成することを目的とした,総合的な人間とAIの協調について考察する。
このモデルはブール決定規則(Boolean decision rules)の形式で、人間の入力は論理的な条件や部分的なテンプレートの形で提供される。
- 参考スコア(独自算出の注目度): 4.435944192177403
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider an aggregated human-AI collaboration aimed at generating a joint
interpretable model. The model takes the form of Boolean decision rules, where
human input is provided in the form of logical conditions or as partial
templates. This focus on the combined construction of a model offers a
different perspective on joint decision making. Previous efforts have typically
focused on aggregating outcomes rather than decisions logic. We demonstrate the
proposed approach through two examples and highlight the usefulness and
challenges of the approach.
- Abstract(参考訳): 共同解釈モデルの作成を目的とした,人間-aiコラボレーションの集約について検討する。
このモデルはブール決定規則(Boolean decision rules)の形式で、人間の入力は論理的な条件や部分的なテンプレートの形で提供される。
このモデルの構築に焦点を合わせることで、共同意思決定に関して異なる視点が得られます。
これまでの取り組みでは、意思決定ロジックよりも結果の集約に重点を置いてきた。
提案手法を2つの例で示すとともに,アプローチの有用性と課題を強調した。
関連論文リスト
- Decompose the model: Mechanistic interpretability in image models with Generalized Integrated Gradients (GIG) [24.02036048242832]
本稿では,すべての中間層を経由した入力から,データセット全体の最終的な出力まで,経路全体をトレースする新しい手法を提案する。
本稿では,PFV(Pointwise Feature Vectors)とERF(Effective Receptive Fields)を用いて,モデル埋め込みを解釈可能な概念ベクトルに分解する。
そして,汎用統合勾配(GIG)を用いて概念ベクトル間の関係を計算し,モデル行動の包括的,データセットワイドな解析を可能にする。
論文 参考訳(メタデータ) (2024-09-03T05:19:35Z) - FIARSE: Model-Heterogeneous Federated Learning via Importance-Aware Submodel Extraction [26.26211464623954]
Federated Importance-Aware Submodel extract (FIARSE)は、モデルパラメータの重要性に基づいて、サブモデルを動的に調整する新しいアプローチである。
既存の研究と比較して,提案手法はサブモデル抽出の理論的基礎を提供する。
提案したFIARSEの優れた性能を示すため,様々なデータセットで大規模な実験を行った。
論文 参考訳(メタデータ) (2024-07-28T04:10:11Z) - Modeling Boundedly Rational Agents with Latent Inference Budgets [56.24971011281947]
エージェントの計算制約を明示的にモデル化する潜在推論予算モデル(L-IBM)を導入する。
L-IBMは、最適なアクターの多様な集団のデータを使ってエージェントモデルを学ぶことができる。
我々は,L-IBMが不確実性の下での意思決定のボルツマンモデルに適合しているか,あるいは上回っていることを示す。
論文 参考訳(メタデータ) (2023-12-07T03:55:51Z) - An attention model for the formation of collectives in real-world
domains [78.1526027174326]
本研究では,サステナブル開発目標に沿った実世界のアプリケーションにエージェントの集合を形成することの問題点を考察する。
本稿では,注目モデルと整数線形プログラムの新たな組み合わせに基づく集合形成のための一般的な手法を提案する。
論文 参考訳(メタデータ) (2022-04-30T09:15:36Z) - Human-AI Collaboration via Conditional Delegation: A Case Study of
Content Moderation [47.102566259034326]
我々は,人間-AI協調のための代替パラダイムとして条件付きデリゲートを提案する。
我々は、条件付きデリゲートルールの作成において、人間を支援する新しいインタフェースを開発する。
本研究は,モデル性能向上における条件付きデリゲートの実現可能性を示す。
論文 参考訳(メタデータ) (2022-04-25T17:00:02Z) - An Ample Approach to Data and Modeling [1.0152838128195467]
さまざまな分野の概念とメソッドを統合するモデルの構築方法をモデル化するためのフレームワークについて説明する。
参照M*メタモデルフレームワークは、厳密な同値関係の観点からデータセットと各モデルの関連付けに批判的に依存する。
開発されたフレームワークがデータクラスタリング、複雑性、共同研究、ディープラーニング、クリエイティビティに関する洞察を提供する方法について、いくつかの考察がなされている。
論文 参考訳(メタデータ) (2021-10-05T01:26:09Z) - Attentional Prototype Inference for Few-Shot Segmentation [128.45753577331422]
数発のセグメンテーションのための確率的潜在変数フレームワークである注意型プロトタイプ推論(API)を提案する。
我々は各オブジェクトカテゴリのプロトタイプを表現するためにグローバル潜在変数を定義し、確率分布としてモデル化する。
我々は4つのベンチマークで広範な実験を行い、提案手法は最先端のプロトタイプベースの手法よりも、少なくとも競争力があり、しばしば優れた性能が得られる。
論文 参考訳(メタデータ) (2021-05-14T06:58:44Z) - Paired Examples as Indirect Supervision in Latent Decision Models [109.76417071249945]
我々は、ペア化された例を活用して、潜在的な決定を学習するためのより強力な手がかりを提供する方法を紹介します。
DROPデータセット上のニューラルネットワークを用いた合成質問応答の改善に本手法を適用した。
論文 参考訳(メタデータ) (2021-04-05T03:58:30Z) - On Exploiting Hitting Sets for Model Reconciliation [53.81101846598925]
ヒューマン・アウェア・プランニングにおいて、プランニング・エージェントは、その計画がなぜ最適なのかを人間に説明する必要があるかもしれない。
この手法はモデル和解と呼ばれ、エージェントはモデルと人間のモデルの違いを調和させようとする。
我々は,計画の領域を超えて拡張されたモデル和解のための論理ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-12-16T21:25:53Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。