論文の概要: Binary domain generalization for sparsifying binary neural networks
- arxiv url: http://arxiv.org/abs/2306.13515v1
- Date: Fri, 23 Jun 2023 14:32:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-26 12:38:52.246922
- Title: Binary domain generalization for sparsifying binary neural networks
- Title(参考訳): 分岐型ニューラルネットワークのためのバイナリドメイン一般化
- Authors: Riccardo Schiavone, Francesco Galati and Maria A. Zuluaga
- Abstract要約: バイナリニューラルネットワーク(BNN)は、リソース制約のあるデバイスにおいて、ディープニューラルネットワーク(DNN)ベースのアプリケーションを開発、デプロイするための魅力的なソリューションである。
BNNの軽量プルーニングは性能劣化を招き、BNNの標準バイナライズドメインがタスクに適していないことを示唆している。
この研究は、プルーニング技術に対してより堅牢な標準バイナリドメインを拡張した、より一般的なバイナリドメインを提案する。
- 参考スコア(独自算出の注目度): 3.2462411268263964
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Binary neural networks (BNNs) are an attractive solution for developing and
deploying deep neural network (DNN)-based applications in resource constrained
devices. Despite their success, BNNs still suffer from a fixed and limited
compression factor that may be explained by the fact that existing pruning
methods for full-precision DNNs cannot be directly applied to BNNs. In fact,
weight pruning of BNNs leads to performance degradation, which suggests that
the standard binarization domain of BNNs is not well adapted for the task. This
work proposes a novel more general binary domain that extends the standard
binary one that is more robust to pruning techniques, thus guaranteeing
improved compression and avoiding severe performance losses. We demonstrate a
closed-form solution for quantizing the weights of a full-precision network
into the proposed binary domain. Finally, we show the flexibility of our
method, which can be combined with other pruning strategies. Experiments over
CIFAR-10 and CIFAR-100 demonstrate that the novel approach is able to generate
efficient sparse networks with reduced memory usage and run-time latency, while
maintaining performance.
- Abstract(参考訳): バイナリニューラルネットワーク(BNN)は、リソース制約のあるデバイスにおいて、ディープニューラルネットワーク(DNN)ベースのアプリケーションを開発、デプロイするための魅力的なソリューションである。
その成功にもかかわらず、BNNは依然として、完全精度DNNに対する既存のプルーニング手法がBNNに直接適用できないという事実によって説明できるような、固定的で限られた圧縮要因に悩まされている。
実際、BNNの重み付けは性能劣化を招き、BNNの標準的な二項化領域がタスクに適していないことを示唆している。
本研究は, プレニング技術に対して堅牢な標準バイナリドメインを拡張し, 圧縮性を向上し, 大幅な性能損失を回避する, 新たな汎用バイナリドメインを提案する。
提案する二分領域への全精度ネットワークの重み付けを定量化するための閉形式解を示す。
最後に,他のプルーニング戦略と組み合わせることが可能な手法の柔軟性を示す。
CIFAR-10とCIFAR-100の実験により、新しいアプローチは、性能を維持しながら、メモリ使用量と実行時のレイテンシを低減した効率的なスパースネットワークを生成することができることを示した。
関連論文リスト
- NAS-BNN: Neural Architecture Search for Binary Neural Networks [55.058512316210056]
我々は、NAS-BNNと呼ばれる二元ニューラルネットワークのための新しいニューラルネットワーク探索手法を提案する。
我々の発見したバイナリモデルファミリーは、20Mから2Mまでの幅広い操作(OP)において、以前のBNNよりも優れていた。
さらに,対象検出タスクにおける探索されたBNNの転送可能性を検証するとともに,探索されたBNNを用いたバイナリ検出器は,MSデータセット上で31.6% mAP,370万 OPsなどの新たな最先端結果を得る。
論文 参考訳(メタデータ) (2024-08-28T02:17:58Z) - Recurrent Bilinear Optimization for Binary Neural Networks [58.972212365275595]
BNNは、実数値重みとスケールファクターの内在的双線型関係を無視している。
私たちの仕事は、双線形の観点からBNNを最適化する最初の試みです。
我々は、様々なモデルやデータセット上で最先端のBNNに対して印象的な性能を示す頑健なRBONNを得る。
論文 参考訳(メタデータ) (2022-09-04T06:45:33Z) - Sparsifying Binary Networks [3.8350038566047426]
バイナリニューラルネットワーク(BNN)は、完全精度のディープニューラルネットワーク(DNN)と同等の精度で複雑なタスクを解く能力を示した。
最近の改善にもかかわらず、非常に限られたリソースを持つ特定のデバイスで不十分な、固定的で制限された圧縮要因に悩まされている。
本稿では,BNNの疎性を導入した新しいモデルとトレーニング手法であるスパースバイナリニューラルネットワーク(SBNN)と,ネットワークの重みをバイナライズする新しい量子化関数を提案する。
論文 参考訳(メタデータ) (2022-07-11T15:54:41Z) - Elastic-Link for Binarized Neural Network [9.83865304744923]
ELモジュールは、その後の畳み込み出力特徴に実値入力特徴を適応的に付加することにより、BNN内の情報フローを豊かにする。
ELは、大規模なImageNetデータセットに挑戦する上で、大幅に改善されている。
ReActNetの統合により、71.9%の精度で新しい最先端結果が得られる。
論文 参考訳(メタデータ) (2021-12-19T13:49:29Z) - Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer [77.78479877473899]
我々は,BNNを大規模モデルに効率的にスケールするための時空間BNNを設計する。
バニラBNNと比較して,本手法はトレーニング時間とパラメータ数を著しく削減し,BNNのスケールアップに有効である。
論文 参考訳(メタデータ) (2021-12-12T17:13:14Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNN) は、BNNの圧縮と高速化に適した新しいタイプのバイナリ量子化設計である。
SNNは、微細な畳み込みカーネル空間におけるバイナリ量子化を利用するカーネル対応最適化フレームワークで訓練されている。
ビジュアル認識ベンチマークの実験とFPGA上でのハードウェア展開は、SNNの大きな可能性を検証する。
論文 参考訳(メタデータ) (2021-10-18T11:30:29Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
本研究では, 実数値から, 最終予測分布上のバイナリネットワークへの誘導型学習パラダイムを提案する。
提案手法は,bnn上で5.515%の絶対利得で,単純なコントラスト学習ベースラインを向上できる。
提案手法は、単純なコントラスト学習ベースラインよりも大幅に改善され、多くの主流教師付きBNN手法に匹敵する。
論文 参考訳(メタデータ) (2021-02-17T18:59:28Z) - FracBNN: Accurate and FPGA-Efficient Binary Neural Networks with
Fractional Activations [20.218382369944152]
binary neural network (bnns) は1ビットの重みとアクティベーションを持つ。
BNNはImageNetのような現実的なデータセットの精度がはるかに低い傾向にある。
本研究では、BNNの精度を大幅に向上させるために分数活性化を利用するFracBNNを提案する。
論文 参考訳(メタデータ) (2020-12-22T17:49:30Z) - FTBNN: Rethinking Non-linearity for 1-bit CNNs and Going Beyond [23.5996182207431]
本稿では,二項化畳み込み過程が,その誤差を最小限に抑えるために線形性を増大させ,BNNの識別能力を損なうことを示す。
我々は、その矛盾を修正するために、適切な非線形モジュールを再検討し、調整することで、最先端のパフォーマンスを実現する強力なベースラインに繋がる。
論文 参考訳(メタデータ) (2020-10-19T08:11:48Z) - Distillation Guided Residual Learning for Binary Convolutional Neural
Networks [83.6169936912264]
Binary CNN(BCNN)とFloating Point CNN(FCNN)のパフォーマンスギャップを埋めることは難しい。
我々は,この性能差が,BCNNとFCNNの中間特徴写像の間にかなりの残差をもたらすことを観察した。
性能ギャップを最小限に抑えるため,BCNN は FCNN と同様の中間特徴写像を生成する。
このトレーニング戦略、すなわち、FCNNから派生したブロックワイド蒸留損失で各バイナリ畳み込みブロックを最適化することで、BCNNをより効果的に最適化する。
論文 参考訳(メタデータ) (2020-07-10T07:55:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。