Binary domain generalization for sparsifying binary neural networks
- URL: http://arxiv.org/abs/2306.13515v1
- Date: Fri, 23 Jun 2023 14:32:16 GMT
- Title: Binary domain generalization for sparsifying binary neural networks
- Authors: Riccardo Schiavone, Francesco Galati and Maria A. Zuluaga
- Abstract summary: Binary neural networks (BNNs) are an attractive solution for developing and deploying deep neural network (DNN)-based applications in resource constrained devices.
Weight pruning of BNNs leads to performance degradation, which suggests that the standard binarization domain of BNNs is not well adapted for the task.
This work proposes a novel more general binary domain that extends the standard binary one that is more robust to pruning techniques.
- Score: 3.2462411268263964
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Binary neural networks (BNNs) are an attractive solution for developing and
deploying deep neural network (DNN)-based applications in resource constrained
devices. Despite their success, BNNs still suffer from a fixed and limited
compression factor that may be explained by the fact that existing pruning
methods for full-precision DNNs cannot be directly applied to BNNs. In fact,
weight pruning of BNNs leads to performance degradation, which suggests that
the standard binarization domain of BNNs is not well adapted for the task. This
work proposes a novel more general binary domain that extends the standard
binary one that is more robust to pruning techniques, thus guaranteeing
improved compression and avoiding severe performance losses. We demonstrate a
closed-form solution for quantizing the weights of a full-precision network
into the proposed binary domain. Finally, we show the flexibility of our
method, which can be combined with other pruning strategies. Experiments over
CIFAR-10 and CIFAR-100 demonstrate that the novel approach is able to generate
efficient sparse networks with reduced memory usage and run-time latency, while
maintaining performance.
Related papers
- NAS-BNN: Neural Architecture Search for Binary Neural Networks [55.058512316210056]
We propose a novel neural architecture search scheme for binary neural networks, named NAS-BNN.
Our discovered binary model family outperforms previous BNNs for a wide range of operations (OPs) from 20M to 200M.
In addition, we validate the transferability of these searched BNNs on the object detection task, and our binary detectors with the searched BNNs achieve a novel state-of-the-art result, e.g., 31.6% mAP with 370M OPs, on MS dataset.
arXiv Detail & Related papers (2024-08-28T02:17:58Z) - Recurrent Bilinear Optimization for Binary Neural Networks [58.972212365275595]
BNNs neglect the intrinsic bilinear relationship of real-valued weights and scale factors.
Our work is the first attempt to optimize BNNs from the bilinear perspective.
We obtain robust RBONNs, which show impressive performance over state-of-the-art BNNs on various models and datasets.
arXiv Detail & Related papers (2022-09-04T06:45:33Z) - Sparsifying Binary Networks [3.8350038566047426]
Binary neural networks (BNNs) have demonstrated their ability to solve complex tasks with comparable accuracy as full-precision deep neural networks (DNNs)
Despite the recent improvements, they suffer from a fixed and limited compression factor that may result insufficient for certain devices with very limited resources.
We propose sparse binary neural networks (SBNNs), a novel model and training scheme which introduces sparsity in BNNs and a new quantization function for binarizing the network's weights.
arXiv Detail & Related papers (2022-07-11T15:54:41Z) - Elastic-Link for Binarized Neural Network [9.83865304744923]
"Elastic-Link" (EL) module enrich information flow within a BNN by adaptively adding real-valued input features to the subsequent convolutional output features.
EL produces a significant improvement on the challenging large-scale ImageNet dataset.
With the integration of ReActNet, it yields a new state-of-the-art result of 71.9% top-1 accuracy.
arXiv Detail & Related papers (2021-12-19T13:49:29Z) - Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer [77.78479877473899]
We design a spatial-temporal-fusion BNN for efficiently scaling BNNs to large models.
Compared to vanilla BNNs, our approach can greatly reduce the training time and the number of parameters, which contributes to scale BNNs efficiently.
arXiv Detail & Related papers (2021-12-12T17:13:14Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNNs) are a new type of binary quantization design tailored to compress and accelerate BNNs.
SNNs are trained with a kernel-aware optimization framework, which exploits binary quantization in the fine-grained convolutional kernel space.
Experiments on visual recognition benchmarks and the hardware deployment on FPGA validate the great potentials of SNNs.
arXiv Detail & Related papers (2021-10-18T11:30:29Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
We present a novel guided learning paradigm from real-valued to distill binary networks on the final prediction distribution.
Our proposed method can boost the simple contrastive learning baseline by an absolute gain of 5.515% on BNNs.
Our method achieves substantial improvement over the simple contrastive learning baseline, and is even comparable to many mainstream supervised BNN methods.
arXiv Detail & Related papers (2021-02-17T18:59:28Z) - FracBNN: Accurate and FPGA-Efficient Binary Neural Networks with
Fractional Activations [20.218382369944152]
Binary neural networks (BNNs) have 1-bit weights and activations.
BNNs tend to produce a much lower accuracy on realistic datasets such as ImageNet.
This work proposes FracBNN, which exploits fractional activations to substantially improve the accuracy of BNNs.
arXiv Detail & Related papers (2020-12-22T17:49:30Z) - FTBNN: Rethinking Non-linearity for 1-bit CNNs and Going Beyond [23.5996182207431]
We show that binarized convolution process owns an increasing linearity towards the target of minimizing such error, which in turn hampers BNN's discriminative ability.
We re-investigate and tune proper non-linear modules to fix that contradiction, leading to a strong baseline which achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-10-19T08:11:48Z) - Distillation Guided Residual Learning for Binary Convolutional Neural
Networks [83.6169936912264]
It is challenging to bridge the performance gap between Binary CNN (BCNN) and Floating point CNN (FCNN)
We observe that, this performance gap leads to substantial residuals between intermediate feature maps of BCNN and FCNN.
To minimize the performance gap, we enforce BCNN to produce similar intermediate feature maps with the ones of FCNN.
This training strategy, i.e., optimizing each binary convolutional block with block-wise distillation loss derived from FCNN, leads to a more effective optimization to BCNN.
arXiv Detail & Related papers (2020-07-10T07:55:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.