Simultaneous Image-to-Zero and Zero-to-Noise: Diffusion Models with Analytical Image Attenuation
- URL: http://arxiv.org/abs/2306.13720v9
- Date: Fri, 29 Nov 2024 11:20:58 GMT
- Title: Simultaneous Image-to-Zero and Zero-to-Noise: Diffusion Models with Analytical Image Attenuation
- Authors: Yuhang Huang, Zheng Qin, Xinwang Liu, Kai Xu,
- Abstract summary: We propose incorporating an analytical image attenuation process into the forward diffusion process for high-quality (un)conditioned image generation.<n>Our method represents the forward image-to-noise mapping as simultaneous textitimage-to-zero mapping and textitzero-to-noise mapping.<n>We have conducted experiments on unconditioned image generation, textite.g., CIFAR-10 and CelebA-HQ-256, and image-conditioned downstream tasks such as super-resolution, saliency detection, edge detection, and image inpainting.
- Score: 53.04220377034574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies have demonstrated that the forward diffusion process is crucial for the effectiveness of diffusion models in terms of generative quality and sampling efficiency. We propose incorporating an analytical image attenuation process into the forward diffusion process for high-quality (un)conditioned image generation with significantly fewer denoising steps compared to the vanilla diffusion model requiring thousands of steps. In a nutshell, our method represents the forward image-to-noise mapping as simultaneous \textit{image-to-zero} mapping and \textit{zero-to-noise} mapping. Under this framework, we mathematically derive 1) the training objectives and 2) for the reverse time the sampling formula based on an analytical attenuation function which models image to zero mapping. The former enables our method to learn noise and image components simultaneously which simplifies learning. Importantly, because of the latter's analyticity in the \textit{zero-to-image} sampling function, we can avoid the ordinary differential equation-based accelerators and instead naturally perform sampling with an arbitrary step size. We have conducted extensive experiments on unconditioned image generation, \textit{e.g.}, CIFAR-10 and CelebA-HQ-256, and image-conditioned downstream tasks such as super-resolution, saliency detection, edge detection, and image inpainting. The proposed diffusion models achieve competitive generative quality with much fewer denoising steps compared to the state of the art, thus greatly accelerating the generation speed. In particular, to generate images of comparable quality, our models require only one-twentieth of the denoising steps compared to the baseline denoising diffusion probabilistic models. Moreover, we achieve state-of-the-art performances on the image-conditioned tasks using only no more than 10 steps.
Related papers
- Fast constrained sampling in pre-trained diffusion models [77.21486516041391]
Diffusion models have dominated the field of large, generative image models.
We propose an algorithm for fast-constrained sampling in large pre-trained diffusion models.
arXiv Detail & Related papers (2024-10-24T14:52:38Z) - Beta Sampling is All You Need: Efficient Image Generation Strategy for Diffusion Models using Stepwise Spectral Analysis [22.02829139522153]
We propose an efficient time step sampling method based on an image spectral analysis of the diffusion process.
Instead of the traditional uniform distribution-based time step sampling, we introduce a Beta distribution-like sampling technique.
Our hypothesis is that certain steps exhibit significant changes in image content, while others contribute minimally.
arXiv Detail & Related papers (2024-07-16T20:53:06Z) - Identifying and Solving Conditional Image Leakage in Image-to-Video Diffusion Model [31.70050311326183]
Diffusion models tend to generate videos with less motion than expected.
We address this issue from both inference and training aspects.
Our methods outperform baselines by producing higher motion scores with lower errors.
arXiv Detail & Related papers (2024-06-22T04:56:16Z) - Improved Distribution Matching Distillation for Fast Image Synthesis [54.72356560597428]
We introduce DMD2, a set of techniques that lift this limitation and improve DMD training.
First, we eliminate the regression loss and the need for expensive dataset construction.
Second, we integrate a GAN loss into the distillation procedure, discriminating between generated samples and real images.
arXiv Detail & Related papers (2024-05-23T17:59:49Z) - Provably Robust Score-Based Diffusion Posterior Sampling for Plug-and-Play Image Reconstruction [31.503662384666274]
In science and engineering, the goal is to infer an unknown image from a small number of measurements collected from a known forward model describing certain imaging modality.
Motivated Score-based diffusion models, due to its empirical success, have emerged as an impressive candidate of an exemplary prior in image reconstruction.
arXiv Detail & Related papers (2024-03-25T15:58:26Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
We introduce an inversion method with a high quality-to-operation ratio, enhancing reconstruction accuracy without increasing the number of operations.
We evaluate the performance of our ReNoise technique using various sampling algorithms and models, including recent accelerated diffusion models.
arXiv Detail & Related papers (2024-03-21T17:52:08Z) - Generalized Consistency Trajectory Models for Image Manipulation [59.576781858809355]
Diffusion models (DMs) excel in unconditional generation, as well as on applications such as image editing and restoration.
This work aims to unlock the full potential of consistency trajectory models (CTMs) by proposing generalized CTMs (GCTMs)
We discuss the design space of GCTMs and demonstrate their efficacy in various image manipulation tasks such as image-to-image translation, restoration, and editing.
arXiv Detail & Related papers (2024-03-19T07:24:54Z) - AdaDiff: Adaptive Step Selection for Fast Diffusion Models [82.78899138400435]
We introduce AdaDiff, a lightweight framework designed to learn instance-specific step usage policies.
AdaDiff is optimized using a policy method to maximize a carefully designed reward function.
We conduct experiments on three image generation and two video generation benchmarks and demonstrate that our approach achieves similar visual quality compared to the baseline.
arXiv Detail & Related papers (2023-11-24T11:20:38Z) - SinSR: Diffusion-Based Image Super-Resolution in a Single Step [119.18813219518042]
Super-resolution (SR) methods based on diffusion models exhibit promising results.
But their practical application is hindered by the substantial number of required inference steps.
We propose a simple yet effective method for achieving single-step SR generation, named SinSR.
arXiv Detail & Related papers (2023-11-23T16:21:29Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
We propose a diffusion model-based super-resolution method called ACDMSR.
Our method adapts the standard diffusion model to perform super-resolution through a deterministic iterative denoising process.
Our approach generates more visually realistic counterparts for low-resolution images, emphasizing its effectiveness in practical scenarios.
arXiv Detail & Related papers (2023-07-03T06:49:04Z) - Real-World Denoising via Diffusion Model [14.722529440511446]
Real-world image denoising aims to recover clean images from noisy images captured in natural environments.
diffusion models have achieved very promising results in the field of image generation, outperforming previous generation models.
This paper proposes a novel general denoising diffusion model that can be used for real-world image denoising.
arXiv Detail & Related papers (2023-05-08T04:48:03Z) - DDFM: Denoising Diffusion Model for Multi-Modality Image Fusion [144.9653045465908]
We propose a novel fusion algorithm based on the denoising diffusion probabilistic model (DDPM)
Our approach yields promising fusion results in infrared-visible image fusion and medical image fusion.
arXiv Detail & Related papers (2023-03-13T04:06:42Z) - AI pipeline for accurate retinal layer segmentation using OCT 3D images [3.938455123895825]
Several classical and AI-based algorithms in combination are tested to see their compatibility with data from the combined animal imaging system.
A simple-to-implement analytical equation is shown to be working for brightness manipulation with a 1% increment in mean pixel values.
The thickness estimation process has a 6% error as compared to manual annotated standard data.
arXiv Detail & Related papers (2023-02-15T17:46:32Z) - Person Image Synthesis via Denoising Diffusion Model [116.34633988927429]
We show how denoising diffusion models can be applied for high-fidelity person image synthesis.
Our results on two large-scale benchmarks and a user study demonstrate the photorealism of our proposed approach under challenging scenarios.
arXiv Detail & Related papers (2022-11-22T18:59:50Z) - On Distillation of Guided Diffusion Models [94.95228078141626]
We propose an approach to distilling classifier-free guided diffusion models into models that are fast to sample from.
For standard diffusion models trained on the pixelspace, our approach is able to generate images visually comparable to that of the original model.
For diffusion models trained on the latent-space (e.g., Stable Diffusion), our approach is able to generate high-fidelity images using as few as 1 to 4 denoising steps.
arXiv Detail & Related papers (2022-10-06T18:03:56Z) - Score-based diffusion models for accelerated MRI [35.3148116010546]
We introduce a way to sample data from a conditional distribution given the measurements, such that the model can be readily used for solving inverse problems in imaging.
Our model requires magnitude images only for training, and yet is able to reconstruct complex-valued data, and even extends to parallel imaging.
arXiv Detail & Related papers (2021-10-08T08:42:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.