Simultaneous Image-to-Zero and Zero-to-Noise: Diffusion Models with Analytical Image Attenuation
- URL: http://arxiv.org/abs/2306.13720v9
- Date: Fri, 29 Nov 2024 11:20:58 GMT
- Title: Simultaneous Image-to-Zero and Zero-to-Noise: Diffusion Models with Analytical Image Attenuation
- Authors: Yuhang Huang, Zheng Qin, Xinwang Liu, Kai Xu,
- Abstract summary: We propose incorporating an analytical image attenuation process into the forward diffusion process for high-quality (un)conditioned image generation.
Our method represents the forward image-to-noise mapping as simultaneous textitimage-to-zero mapping and textitzero-to-noise mapping.
We have conducted experiments on unconditioned image generation, textite.g., CIFAR-10 and CelebA-HQ-256, and image-conditioned downstream tasks such as super-resolution, saliency detection, edge detection, and image inpainting.
- Score: 53.04220377034574
- License:
- Abstract: Recent studies have demonstrated that the forward diffusion process is crucial for the effectiveness of diffusion models in terms of generative quality and sampling efficiency. We propose incorporating an analytical image attenuation process into the forward diffusion process for high-quality (un)conditioned image generation with significantly fewer denoising steps compared to the vanilla diffusion model requiring thousands of steps. In a nutshell, our method represents the forward image-to-noise mapping as simultaneous \textit{image-to-zero} mapping and \textit{zero-to-noise} mapping. Under this framework, we mathematically derive 1) the training objectives and 2) for the reverse time the sampling formula based on an analytical attenuation function which models image to zero mapping. The former enables our method to learn noise and image components simultaneously which simplifies learning. Importantly, because of the latter's analyticity in the \textit{zero-to-image} sampling function, we can avoid the ordinary differential equation-based accelerators and instead naturally perform sampling with an arbitrary step size. We have conducted extensive experiments on unconditioned image generation, \textit{e.g.}, CIFAR-10 and CelebA-HQ-256, and image-conditioned downstream tasks such as super-resolution, saliency detection, edge detection, and image inpainting. The proposed diffusion models achieve competitive generative quality with much fewer denoising steps compared to the state of the art, thus greatly accelerating the generation speed. In particular, to generate images of comparable quality, our models require only one-twentieth of the denoising steps compared to the baseline denoising diffusion probabilistic models. Moreover, we achieve state-of-the-art performances on the image-conditioned tasks using only no more than 10 steps.
Related papers
- Fast constrained sampling in pre-trained diffusion models [77.21486516041391]
Diffusion models have dominated the field of large, generative image models.
We propose an algorithm for fast-constrained sampling in large pre-trained diffusion models.
arXiv Detail & Related papers (2024-10-24T14:52:38Z) - AdaDiff: Adaptive Step Selection for Fast Diffusion Models [82.78899138400435]
We introduce AdaDiff, a lightweight framework designed to learn instance-specific step usage policies.
AdaDiff is optimized using a policy method to maximize a carefully designed reward function.
We conduct experiments on three image generation and two video generation benchmarks and demonstrate that our approach achieves similar visual quality compared to the baseline.
arXiv Detail & Related papers (2023-11-24T11:20:38Z) - SinSR: Diffusion-Based Image Super-Resolution in a Single Step [119.18813219518042]
Super-resolution (SR) methods based on diffusion models exhibit promising results.
But their practical application is hindered by the substantial number of required inference steps.
We propose a simple yet effective method for achieving single-step SR generation, named SinSR.
arXiv Detail & Related papers (2023-11-23T16:21:29Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
We propose a diffusion model-based super-resolution method called ACDMSR.
Our method adapts the standard diffusion model to perform super-resolution through a deterministic iterative denoising process.
Our approach generates more visually realistic counterparts for low-resolution images, emphasizing its effectiveness in practical scenarios.
arXiv Detail & Related papers (2023-07-03T06:49:04Z) - Real-World Denoising via Diffusion Model [14.722529440511446]
Real-world image denoising aims to recover clean images from noisy images captured in natural environments.
diffusion models have achieved very promising results in the field of image generation, outperforming previous generation models.
This paper proposes a novel general denoising diffusion model that can be used for real-world image denoising.
arXiv Detail & Related papers (2023-05-08T04:48:03Z) - On Distillation of Guided Diffusion Models [94.95228078141626]
We propose an approach to distilling classifier-free guided diffusion models into models that are fast to sample from.
For standard diffusion models trained on the pixelspace, our approach is able to generate images visually comparable to that of the original model.
For diffusion models trained on the latent-space (e.g., Stable Diffusion), our approach is able to generate high-fidelity images using as few as 1 to 4 denoising steps.
arXiv Detail & Related papers (2022-10-06T18:03:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.