Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration
- URL: http://arxiv.org/abs/2306.13769v3
- Date: Mon, 18 Mar 2024 17:29:42 GMT
- Title: Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration
- Authors: Haitao Lin, Yufei Huang, Odin Zhang, Lirong Wu, Siyuan Li, Zhiyuan Chen, Stan Z. Li,
- Abstract summary: We propose D3FG, a functional-group-based diffusion model for pocket-specific molecule generation and elaboration.
D3FG decomposes molecules into two categories of components: functional groups defined as rigid bodies and linkers as mass points.
In the experiments, our method can generate molecules with more realistic 3D structures, competitive affinities toward the protein targets, and better drug properties.
- Score: 63.23362798102195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, AI-assisted drug design methods have been proposed to generate molecules given the pockets' structures of target proteins. Most of them are atom-level-based methods, which consider atoms as basic components and generate atom positions and types. In this way, however, it is hard to generate realistic fragments with complicated structures. To solve this, we propose D3FG, a functional-group-based diffusion model for pocket-specific molecule generation and elaboration. D3FG decomposes molecules into two categories of components: functional groups defined as rigid bodies and linkers as mass points. And the two kinds of components can together form complicated fragments that enhance ligand-protein interactions. To be specific, in the diffusion process, D3FG diffuses the data distribution of the positions, orientations, and types of the components into a prior distribution; In the generative process, the noise is gradually removed from the three variables by denoisers parameterized with designed equivariant graph neural networks. In the experiments, our method can generate molecules with more realistic 3D structures, competitive affinities toward the protein targets, and better drug properties. Besides, D3FG as a solution to a new task of molecule elaboration, could generate molecules with high affinities based on existing ligands and the hotspots of target proteins.
Related papers
- DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
Existing structured-based drug design methods treat all ligand atoms equally.
We propose a new diffusion model, DecompDiff, with decomposed priors over arms and scaffold.
Our approach achieves state-of-the-art performance in generating high-affinity molecules.
arXiv Detail & Related papers (2024-02-26T05:21:21Z) - Coarse-to-Fine: a Hierarchical Diffusion Model for Molecule Generation
in 3D [38.181969810488916]
Existing methods usually generate molecules in atom resolution and ignore intrinsic local structures such as rings.
Fragment-based molecule generation is a promising strategy, however, it is non-trivial to be adapted for 3D non-autoregressive generations.
In this paper, we propose a coarse-to-fine strategy to tackle this problem, in which a Hierarchical Diffusion-based model (i.e.HierDiff) is proposed to preserve the validity of local segments without relying on autore modeling.
arXiv Detail & Related papers (2023-05-05T13:08:38Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
We present a new model for generating a comprehensive representation of molecules, including atom features, 2D discrete molecule structures, and 3D continuous molecule coordinates.
We propose a novel graph transformer architecture to denoise the diffusion process.
Our model is a promising approach for designing stable and diverse molecules and can be applied to a wide range of tasks in molecular modeling.
arXiv Detail & Related papers (2023-04-28T04:25:57Z) - DiffBP: Generative Diffusion of 3D Molecules for Target Protein Binding [51.970607704953096]
Previous works usually generate atoms in an auto-regressive way, where element types and 3D coordinates of atoms are generated one by one.
In real-world molecular systems, the interactions among atoms in an entire molecule are global, leading to the energy function pair-coupled among atoms.
In this work, a generative diffusion model for molecular 3D structures based on target proteins is established, at a full-atom level in a non-autoregressive way.
arXiv Detail & Related papers (2022-11-21T07:02:15Z) - Equivariant 3D-Conditional Diffusion Models for Molecular Linker Design [82.23006955069229]
We propose DiffLinker, an E(3)-equivariant 3D-conditional diffusion model for molecular linker design.
Our model places missing atoms in between and designs a molecule incorporating all the initial fragments.
We demonstrate that DiffLinker outperforms other methods on the standard datasets generating more diverse and synthetically-accessible molecules.
arXiv Detail & Related papers (2022-10-11T09:13:37Z) - Scalable Fragment-Based 3D Molecular Design with Reinforcement Learning [68.8204255655161]
We introduce a novel framework for scalable 3D design that uses a hierarchical agent to build molecules.
In a variety of experiments, we show that our agent, guided only by energy considerations, can efficiently learn to produce molecules with over 100 atoms.
arXiv Detail & Related papers (2022-02-01T18:54:24Z) - Generating 3D Molecules Conditional on Receptor Binding Sites with Deep
Generative Models [0.0]
We describe for the first time a deep learning system for generating 3D molecular structures conditioned on a receptor binding site.
We apply atom fitting and bond inference procedures to construct valid molecular conformations from generated atomic densities.
This work opens the door for end-to-end prediction of stable bioactive molecules from protein structures with deep learning.
arXiv Detail & Related papers (2021-10-28T15:17:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.