DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design
- URL: http://arxiv.org/abs/2403.07902v1
- Date: Mon, 26 Feb 2024 05:21:21 GMT
- Title: DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design
- Authors: Jiaqi Guan, Xiangxin Zhou, Yuwei Yang, Yu Bao, Jian Peng, Jianzhu Ma, Qiang Liu, Liang Wang, Quanquan Gu,
- Abstract summary: Existing structured-based drug design methods treat all ligand atoms equally.
We propose a new diffusion model, DecompDiff, with decomposed priors over arms and scaffold.
Our approach achieves state-of-the-art performance in generating high-affinity molecules.
- Score: 62.68420322996345
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Designing 3D ligands within a target binding site is a fundamental task in drug discovery. Existing structured-based drug design methods treat all ligand atoms equally, which ignores different roles of atoms in the ligand for drug design and can be less efficient for exploring the large drug-like molecule space. In this paper, inspired by the convention in pharmaceutical practice, we decompose the ligand molecule into two parts, namely arms and scaffold, and propose a new diffusion model, DecompDiff, with decomposed priors over arms and scaffold. In order to facilitate the decomposed generation and improve the properties of the generated molecules, we incorporate both bond diffusion in the model and additional validity guidance in the sampling phase. Extensive experiments on CrossDocked2020 show that our approach achieves state-of-the-art performance in generating high-affinity molecules while maintaining proper molecular properties and conformational stability, with up to -8.39 Avg. Vina Dock score and 24.5 Success Rate. The code is provided at https://github.com/bytedance/DecompDiff
Related papers
- Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiff is a novel framework to align pretrained target diffusion models with preferred functional properties.
It can generate molecules with state-of-the-art binding energies with up to -7.07 Avg. Vina Score.
arXiv Detail & Related papers (2024-07-01T06:10:29Z) - TAGMol: Target-Aware Gradient-guided Molecule Generation [19.977071499171903]
3D generative models have shown significant promise in structure-based drug design (SBDD)
We decouple the problem into molecular generation and property prediction.
The latter synergistically guides the diffusion sampling process, facilitating guided diffusion and resulting in the creation of meaningful molecules with the desired properties.
We call this guided molecular generation process as TAGMol.
arXiv Detail & Related papers (2024-06-03T14:43:54Z) - AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug Design [16.946648071157618]
We propose a diffusion-based fragment-wise autoregressive generation model for structure-based drug design (SBDD)
We design a novel molecule assembly strategy named conformal motif that preserves the conformation of local structures of molecules first.
We then encode the interaction of the protein-ligand complex with an SE(3)-equivariant convolutional network and generate molecules motif-by-motif with diffusion modeling.
arXiv Detail & Related papers (2024-04-02T14:44:02Z) - Diffusing on Two Levels and Optimizing for Multiple Properties: A Novel
Approach to Generating Molecules with Desirable Properties [33.2976176283611]
We present a novel approach to generating molecules with desirable properties, which expands the diffusion model framework with multiple innovative designs.
To get desirable molecular fragments, we develop a novel electronic effect based fragmentation method.
We show that the molecules generated by our proposed method have better validity, uniqueness, novelty, Fr'echet ChemNet Distance (FCD), QED, and PlogP than those generated by current SOTA models.
arXiv Detail & Related papers (2023-10-05T11:43:21Z) - Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration [63.23362798102195]
We propose D3FG, a functional-group-based diffusion model for pocket-specific molecule generation and elaboration.
D3FG decomposes molecules into two categories of components: functional groups defined as rigid bodies and linkers as mass points.
In the experiments, our method can generate molecules with more realistic 3D structures, competitive affinities toward the protein targets, and better drug properties.
arXiv Detail & Related papers (2023-05-30T06:41:20Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
We present a new model for generating a comprehensive representation of molecules, including atom features, 2D discrete molecule structures, and 3D continuous molecule coordinates.
We propose a novel graph transformer architecture to denoise the diffusion process.
Our model is a promising approach for designing stable and diverse molecules and can be applied to a wide range of tasks in molecular modeling.
arXiv Detail & Related papers (2023-04-28T04:25:57Z) - Equivariant 3D-Conditional Diffusion Models for Molecular Linker Design [82.23006955069229]
We propose DiffLinker, an E(3)-equivariant 3D-conditional diffusion model for molecular linker design.
Our model places missing atoms in between and designs a molecule incorporating all the initial fragments.
We demonstrate that DiffLinker outperforms other methods on the standard datasets generating more diverse and synthetically-accessible molecules.
arXiv Detail & Related papers (2022-10-11T09:13:37Z) - Structure-aware generation of drug-like molecules [2.449909275410288]
Deep generative methods have shown promise in proposing novel molecules from scratch (de-novo design)
We propose a novel supervised model that generates molecular graphs jointly with 3D pose in a discretised molecular space.
We evaluate our model using a docking benchmark and find that guided generation improves predicted binding affinities by 8% and drug-likeness scores by 10% over the baseline.
arXiv Detail & Related papers (2021-11-07T15:19:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.