Engineering quantum states from a spatially structured quantum eraser
- URL: http://arxiv.org/abs/2306.13821v1
- Date: Sat, 24 Jun 2023 00:11:36 GMT
- Title: Engineering quantum states from a spatially structured quantum eraser
- Authors: Carlo Schiano, Bereneice Sephton, Roberto Aiello, Francesco Graffitti,
Nijil Lal, Andrea Chiuri, Simone Santoro, Luigi Santamaria Amato, Lorenzo
Marrucci, Corrado de Lisio, Vincenzo D'Ambrosio
- Abstract summary: Quantum interference can be enabled by projecting the quantum state onto ambiguous properties that render the photons indistinguishable.
By combining these ideas, here we design and experimentally demonstrate a simple and robust scheme that tailors quantum interference to engineer photonic states.
We believe these spatially-engineered multi-photon quantum states may be of significance in fields such as quantum metrology, microscopy, and communications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum interference is a central resource in many quantum-enhanced tasks,
from computation to communication protocols. While it usually occurs between
identical input photons, quantum interference can be enabled by projecting the
quantum state onto ambiguous properties that render the photons
indistinguishable, a process known as a quantum erasing. Structured light, on
the other hand, is another hallmark of photonics: it is achieved by
manipulating the degrees of freedom of light at the most basic level and
enables a multitude of applications in both classical and quantum regimes. By
combining these ideas, here we design and experimentally demonstrate a simple
and robust scheme that tailors quantum interference to engineer photonic states
with spatially structured coalescence along the transverse profile, a type of
quantum mode with no classical counterpart. To achieve this, we locally tune
the distinguishability of a photon pair via spatial structuring of their
polarisation, creating a structured quantum eraser. We believe these
spatially-engineered multi-photon quantum states may be of significance in
fields such as quantum metrology, microscopy, and communications.
Related papers
- Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Dynamical photon-photon interaction mediated by a quantum emitter [1.9677315976601693]
Single photons constitute a main platform in quantum science and technology.
Main challenge in quantum photonics is how to generate advanced entangled resource states and efficient light-matter interfaces.
We utilize the efficient and coherent coupling of a single quantum emitter to a nanophotonic waveguide for realizing quantum nonlinear interaction between single-photon wavepackets.
arXiv Detail & Related papers (2021-12-13T17:33:30Z) - Modelling Markovian light-matter interactions for quantum optical
devices in the solid state [0.0]
I analyze fundamental components and processes for quantum optical devices with a focus on solid-state quantum systems.
I make heavy use of an analytic quantum trajectories approach applied to a general Markovian master equation of an optically-active quantum system.
arXiv Detail & Related papers (2021-05-13T23:00:34Z) - Single-photon quantum hardware: towards scalable photonic quantum
technology with a quantum advantage [0.41998444721319217]
We will present the current state-of-the-art in single-photon quantum hardware and the main photonic building blocks required in order to scale up.
We will point out specific promising applications of the hardware building blocks within quantum communication and photonic quantum computing.
arXiv Detail & Related papers (2021-03-01T16:22:59Z) - Space-Time Quantum Metasurfaces [0.0]
We introduce the concept of space-time quantum metasurfaces for dynamical control of quantum light.
Photonic platforms based on the space-time quantum metasurface concept have the potential to enable novel functionalities.
arXiv Detail & Related papers (2021-01-25T21:48:06Z) - Deterministic photonic quantum computation in a synthetic time dimension [0.483420384410068]
We propose a scalable architecture for a photonic quantum computer.
The proposed device has a machine size which is independent of quantum circuit depth.
It does not require single-photon detectors, operates deterministically, and is robust to experimental imperfections.
arXiv Detail & Related papers (2021-01-19T18:59:18Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.