Score-based Generative Models for Photoacoustic Image Reconstruction
with Rotation Consistency Constraints
- URL: http://arxiv.org/abs/2306.13843v1
- Date: Sat, 24 Jun 2023 02:47:03 GMT
- Title: Score-based Generative Models for Photoacoustic Image Reconstruction
with Rotation Consistency Constraints
- Authors: Shangqing Tong, Hengrong Lan, Liming Nie, Jianwen Luo and Fei Gao
- Abstract summary: Photoacoustic tomography (PAT) is a newly emerged imaging modality which enables both high optical contrast and acoustic depth of penetration.
Previous works based on deep learning were trained in supervised fashion, which directly map the input partially known sensor data to the ground truth reconstructed from full field of view.
We propose Rotation Consistency Constrained Score-based Generative Model (RCC-SGM) which recovers the PAT images by iterative sampling between Langevin dynamics and a constraint term.
- Score: 6.9663558538050685
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Photoacoustic tomography (PAT) is a newly emerged imaging modality which
enables both high optical contrast and acoustic depth of penetration.
Reconstructing images of photoacoustic tomography from limited amount of senser
data is among one of the major challenges in photoacoustic imaging. Previous
works based on deep learning were trained in supervised fashion, which directly
map the input partially known sensor data to the ground truth reconstructed
from full field of view. Recently, score-based generative models played an
increasingly significant role in generative modeling. Leveraging this
probabilistic model, we proposed Rotation Consistency Constrained Score-based
Generative Model (RCC-SGM), which recovers the PAT images by iterative sampling
between Langevin dynamics and a constraint term utilizing the rotation
consistency between the images and the measurements. Our proposed method can
generalize to different measurement processes (32.29 PSNR with 16 measurements
under random sampling, whereas 28.50 for supervised counterpart), while
supervised methods need to train on specific inverse mappings.
Related papers
- CT-SDM: A Sampling Diffusion Model for Sparse-View CT Reconstruction across All Sampling Rates [16.985836345715963]
Sparse views X-ray computed tomography has emerged as a contemporary technique to mitigate radiation dose degradation.
Recent studies utilizing deep learning methods has made promising progress in removing artifacts for Sparse-View Computed Tomography (SVCT)
Our study proposes a adaptive reconstruction method to achieve high-performance SVCT reconstruction at any sampling rate.
arXiv Detail & Related papers (2024-09-03T03:06:15Z) - Fast Sampling generative model for Ultrasound image reconstruction [3.3545464959630578]
We propose a novel sampling framework that concurrently enforces data consistency of ultrasound signals and data-driven priors.
By leveraging the advanced diffusion model, the generation of high-quality images is substantially expedited.
arXiv Detail & Related papers (2023-12-15T03:28:17Z) - Towards High-quality HDR Deghosting with Conditional Diffusion Models [88.83729417524823]
High Dynamic Range (LDR) images can be recovered from several Low Dynamic Range (LDR) images by existing Deep Neural Networks (DNNs) techniques.
DNNs still generate ghosting artifacts when LDR images have saturation and large motion.
We formulate the HDR deghosting problem as an image generation that leverages LDR features as the diffusion model's condition.
arXiv Detail & Related papers (2023-11-02T01:53:55Z) - Reconstruct-and-Generate Diffusion Model for Detail-Preserving Image
Denoising [16.43285056788183]
We propose a novel approach called the Reconstruct-and-Generate Diffusion Model (RnG)
Our method leverages a reconstructive denoising network to recover the majority of the underlying clean signal.
It employs a diffusion algorithm to generate residual high-frequency details, thereby enhancing visual quality.
arXiv Detail & Related papers (2023-09-19T16:01:20Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
We present a learning method to optimize sub-sampling patterns for compressed sensing multi-coil MRI.
We use a single-step reconstruction based on the posterior mean estimate given by the diffusion model and the MRI measurement process.
Our method requires as few as five training images to learn effective sampling patterns.
arXiv Detail & Related papers (2023-06-05T22:09:06Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
We propose a novel deep neural network based regularizer which is trained in a generative setting on reference magnitude images only.
The results demonstrate competitive performance, on par with state-of-the-art end-to-end deep learning methods.
arXiv Detail & Related papers (2022-10-25T08:34:29Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - LEARN++: Recurrent Dual-Domain Reconstruction Network for Compressed
Sensing CT [17.168584459606272]
The LEARN++ model integrates two parallel and interactiveworks to perform image restoration and sinogram inpainting operations on both the image and projection domains simultaneously.
Results show that the proposed LEARN++ model achieves competitive qualitative and quantitative results compared to several state-of-the-art methods in terms of both artifact reduction and detail preservation.
arXiv Detail & Related papers (2020-12-13T07:00:50Z) - SIR: Self-supervised Image Rectification via Seeing the Same Scene from
Multiple Different Lenses [82.56853587380168]
We propose a novel self-supervised image rectification (SIR) method based on an important insight that the rectified results of distorted images of the same scene from different lens should be the same.
We leverage a differentiable warping module to generate the rectified images and re-distorted images from the distortion parameters.
Our method achieves comparable or even better performance than the supervised baseline method and representative state-of-the-art methods.
arXiv Detail & Related papers (2020-11-30T08:23:25Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.