SAR Despeckling using a Denoising Diffusion Probabilistic Model
- URL: http://arxiv.org/abs/2206.04514v1
- Date: Thu, 9 Jun 2022 14:00:26 GMT
- Title: SAR Despeckling using a Denoising Diffusion Probabilistic Model
- Authors: Malsha V. Perera, Nithin Gopalakrishnan Nair, Wele Gedara Chaminda
Bandara and Vishal M. Patel
- Abstract summary: The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
- Score: 52.25981472415249
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Speckle is a multiplicative noise which affects all coherent imaging
modalities including Synthetic Aperture Radar (SAR) images. The presence of
speckle degrades the image quality and adversely affects the performance of SAR
image understanding applications such as automatic target recognition and
change detection. Thus, SAR despeckling is an important problem in remote
sensing. In this paper, we introduce SAR-DDPM, a denoising diffusion
probabilistic model for SAR despeckling. The proposed method comprises of a
Markov chain that transforms clean images to white Gaussian noise by repeatedly
adding random noise. The despeckled image is recovered by a reverse process
which iteratively predicts the added noise using a noise predictor which is
conditioned on the speckled image. In addition, we propose a new inference
strategy based on cycle spinning to improve the despeckling performance. Our
experiments on both synthetic and real SAR images demonstrate that the proposed
method achieves significant improvements in both quantitative and qualitative
results over the state-of-the-art despeckling methods.
Related papers
- Zero-Shot Image Denoising for High-Resolution Electron Microscopy [28.34992348748098]
High-resolution electron microscopy (HREM) imaging technique is a powerful tool for directly visualizing a broad range of materials in real-space.
It faces challenges in denoising due to ultra-low signal-to-noise ratio (SNR) and scarce data availability.
We propose Noise2SR, a zero-shot self-supervised learning (ZS-SSL) denoising framework for HREM.
arXiv Detail & Related papers (2024-06-20T12:40:18Z) - SAR Despeckling via Regional Denoising Diffusion Probabilistic Model [6.154796320245652]
Region Denoising Diffusion Probabilistic Model (R-DDPM) based on generative models.
This paper introduces a novel despeckling approach termed Region Denoising Diffusion Probabilistic Model (R-DDPM) based on generative models.
arXiv Detail & Related papers (2024-01-06T04:34:46Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
We propose a diffusion model-based super-resolution method called ACDMSR.
Our method adapts the standard diffusion model to perform super-resolution through a deterministic iterative denoising process.
Our approach generates more visually realistic counterparts for low-resolution images, emphasizing its effectiveness in practical scenarios.
arXiv Detail & Related papers (2023-07-03T06:49:04Z) - Representing Noisy Image Without Denoising [91.73819173191076]
Fractional-order Moments in Radon space (FMR) is designed to derive robust representation directly from noisy images.
Unlike earlier integer-order methods, our work is a more generic design taking such classical methods as special cases.
arXiv Detail & Related papers (2023-01-18T10:13:29Z) - Poisson2Sparse: Self-Supervised Poisson Denoising From a Single Image [34.27748767631027]
We present a novel self-supervised learning method for single-image denoising.
We approximate traditional iterative optimization algorithms for image denoising with a recurrent neural network.
Our method outperforms the state-of-the-art approaches in terms of PSNR and SSIM.
arXiv Detail & Related papers (2022-06-04T00:08:58Z) - Designing a Practical Degradation Model for Deep Blind Image
Super-Resolution [134.9023380383406]
Single image super-resolution (SISR) methods would not perform well if the assumed degradation model deviates from those in real images.
This paper proposes to design a more complex but practical degradation model that consists of randomly shuffled blur, downsampling and noise degradations.
arXiv Detail & Related papers (2021-03-25T17:40:53Z) - Statistical Analysis of Signal-Dependent Noise: Application in Blind
Localization of Image Splicing Forgery [20.533239616846874]
In this work, we apply signal-dependent noise (SDN) to splicing localization tasks.
By building a maximum a posterior Markov random field (MAP-MRF) framework, we exploit the likelihood of noise to reveal the alien region of spliced objects.
Experimental results demonstrate that our method is effective and provides a comparative localization performance.
arXiv Detail & Related papers (2020-10-30T11:53:53Z) - Dual Adversarial Network: Toward Real-world Noise Removal and Noise
Generation [52.75909685172843]
Real-world image noise removal is a long-standing yet very challenging task in computer vision.
We propose a novel unified framework to deal with the noise removal and noise generation tasks.
Our method learns the joint distribution of the clean-noisy image pairs.
arXiv Detail & Related papers (2020-07-12T09:16:06Z) - SAR2SAR: a semi-supervised despeckling algorithm for SAR images [3.9490074068698]
Deep learning algorithm with self-supervision is proposed in this paper: SAR2SAR.
The strategy to adapt it to SAR despeckling is presented, based on a compensation of temporal changes and a loss function adapted to the statistics of speckle.
Results on real images are discussed, to show the potential of the proposed algorithm.
arXiv Detail & Related papers (2020-06-26T15:07:28Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.