Cross-domain Recommender Systems via Multimodal Domain Adaptation
- URL: http://arxiv.org/abs/2306.13887v3
- Date: Mon, 17 Feb 2025 08:44:49 GMT
- Title: Cross-domain Recommender Systems via Multimodal Domain Adaptation
- Authors: Adamya Shyam, Ramya Kamani, Venkateswara Rao Kagita, Vikas Kumar,
- Abstract summary: Collaborative Filtering (CF) has emerged as one of the most prominent implementation strategies for building recommender systems.
Cross-domain CF alleviates the problem of data sparsity by finding a common set of entities (users or items) across the domains.
This paper introduces a domain adaptation technique to align the embeddings of entities across domains.
- Score: 2.306402684958048
- License:
- Abstract: Collaborative Filtering (CF) has emerged as one of the most prominent implementation strategies for building recommender systems. The key idea is to exploit the usage patterns of individuals to generate personalized recommendations. CF techniques, especially for newly launched platforms, often face a critical issue known as the data sparsity problem, which greatly limits their performance. Cross-domain CF alleviates the problem of data sparsity by finding a common set of entities (users or items) across the domains, which then act as a conduit for knowledge transfer. Nevertheless, most real-world datasets are collected from different domains, so they often lack information about anchor points or reference information for entity alignment. This paper introduces a domain adaptation technique to align the embeddings of entities across domains. Our approach first exploits the available textual and visual information to independently learn a multi-view latent representation for each entity in the auxiliary and target domains. The different representations of the entity are then fused to generate the corresponding unified representation. A domain classifier is then trained to learn the embedding for the domain alignment by fixing the unified features as the anchor points. Experiments on \AS{four} publicly available benchmark datasets indicate the effectiveness of our proposed approach.
Related papers
- Mixed Attention Network for Cross-domain Sequential Recommendation [63.983590953727386]
We propose a Mixed Attention Network (MAN) with local and global attention modules to extract the domain-specific and cross-domain information.
Experimental results on two real-world datasets demonstrate the superiority of our proposed model.
arXiv Detail & Related papers (2023-11-14T16:07:16Z) - FedDCSR: Federated Cross-domain Sequential Recommendation via
Disentangled Representation Learning [17.497009723665116]
We propose FedDCSR, a novel cross-domain sequential recommendation framework via disentangled representation learning.
We introduce an approach called inter-intra domain sequence representation disentanglement (SRD) to disentangle user sequence features into domain-shared and domain-exclusive features.
In addition, we design an intra domain contrastive infomax (CIM) strategy to learn richer domain-exclusive features of users by performing data augmentation on user sequences.
arXiv Detail & Related papers (2023-09-15T14:23:20Z) - Exploiting Graph Structured Cross-Domain Representation for Multi-Domain
Recommendation [71.45854187886088]
Multi-domain recommender systems benefit from cross-domain representation learning and positive knowledge transfer.
We use temporal intra- and inter-domain interactions as contextual information for our method called MAGRec.
We perform experiments on publicly available datasets in different scenarios where MAGRec consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-02-12T19:51:32Z) - Cross-domain recommendation via user interest alignment [20.387327479445773]
Cross-domain recommendation aims to leverage knowledge from multiple domains to alleviate the data sparsity and cold-start problems in traditional recommender systems.
The general practice of this approach is to train user embeddings in each domain separately and then aggregate them in a plain manner.
We propose a novel cross-domain recommendation framework, namely COAST, to improve recommendation performance on dual domains.
arXiv Detail & Related papers (2023-01-26T23:54:41Z) - Adaptive Methods for Aggregated Domain Generalization [26.215904177457997]
In many settings, privacy concerns prohibit obtaining domain labels for the training data samples.
We propose a domain-adaptive approach to this problem, which operates in two steps.
Our approach achieves state-of-the-art performance on a variety of domain generalization benchmarks without using domain labels.
arXiv Detail & Related papers (2021-12-09T08:57:01Z) - A cross-domain recommender system using deep coupled autoencoders [77.86290991564829]
Two novel coupled autoencoder-based deep learning methods are proposed for cross-domain recommendation.
The first method aims to simultaneously learn a pair of autoencoders in order to reveal the intrinsic representations of the items in the source and target domains.
The second method is derived based on a new joint regularized optimization problem, which employs two autoencoders to generate in a deep and non-linear manner the user and item-latent factors.
arXiv Detail & Related papers (2021-12-08T15:14:26Z) - Domain Adaptation for Sentiment Analysis Using Increased Intraclass
Separation [31.410122245232373]
Cross-domain sentiment analysis methods have received significant attention.
We introduce a new domain adaptation method which induces large margins between different classes in an embedding space.
This embedding space is trained to be domain-agnostic by matching the data distributions across the domains.
arXiv Detail & Related papers (2021-07-04T11:39:12Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available.
This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets.
We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-03-25T14:33:33Z) - Cross-Domain Facial Expression Recognition: A Unified Evaluation
Benchmark and Adversarial Graph Learning [85.6386289476598]
We develop a novel adversarial graph representation adaptation (AGRA) framework for cross-domain holistic-local feature co-adaptation.
We conduct extensive and fair evaluations on several popular benchmarks and show that the proposed AGRA framework outperforms previous state-of-the-art methods.
arXiv Detail & Related papers (2020-08-03T15:00:31Z) - Learning to Combine: Knowledge Aggregation for Multi-Source Domain
Adaptation [56.694330303488435]
We propose a Learning to Combine for Multi-Source Domain Adaptation (LtC-MSDA) framework.
In the nutshell, a knowledge graph is constructed on the prototypes of various domains to realize the information propagation among semantically adjacent representations.
Our approach outperforms existing methods with a remarkable margin.
arXiv Detail & Related papers (2020-07-17T07:52:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.