論文の概要: Quantifying the Optimization and Generalization Advantages of Graph Neural Networks Over Multilayer Perceptrons
- arxiv url: http://arxiv.org/abs/2306.13926v3
- Date: Fri, 06 Jun 2025 15:58:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:42.557472
- Title: Quantifying the Optimization and Generalization Advantages of Graph Neural Networks Over Multilayer Perceptrons
- Title(参考訳): 多層パーセプトロン上でのグラフニューラルネットワークの最適化と一般化の利点の定量化
- Authors: Wei Huang, Yuan Cao, Haonan Wang, Xin Cao, Taiji Suzuki,
- Abstract要約: グラフネットワーク(GNN)は、グラフ構造化データから学習する際、顕著な能力を示した。
最適化と一般化の観点から、GNNと一般化を比較した分析の欠如がまだ残っている。
- 参考スコア(独自算出の注目度): 50.33260238739837
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have demonstrated remarkable capabilities in learning from graph-structured data, often outperforming traditional Multilayer Perceptrons (MLPs) in numerous graph-based tasks. Although existing works have demonstrated the benefits of graph convolution through Laplacian smoothing, expressivity or separability, there remains a lack of quantitative analysis comparing GNNs and MLPs from an optimization and generalization perspective. This study aims to address this gap by examining the role of graph convolution through feature learning theory. Using a signal-noise data model, we conduct a comparative analysis of the optimization and generalization between two-layer graph convolutional networks (GCNs) and their MLP counterparts. Our approach tracks the trajectory of signal learning and noise memorization in GNNs, characterizing their post-training generalization. We reveal that GNNs significantly prioritize signal learning, thus enhancing the regime of {low test error} over MLPs by $D^{q-2}$ times, where $D$ denotes a node's expected degree and $q$ is the power of ReLU activation function with $q>2$. This finding highlights a substantial and quantitative discrepancy between GNNs and MLPs in terms of optimization and generalization, a conclusion further supported by our empirical simulations on both synthetic and real-world datasets.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習する際、顕著な能力を示し、多くのグラフベースのタスクにおいて従来のマルチレイヤパーセプトロン(MLP)を上回っている。
既存の研究は、ラプラシアの滑らか化、表現性、分離性によるグラフ畳み込みの利点を実証しているが、最適化と一般化の観点からGNNとMLPを比較した定量的分析の欠如が残っている。
本研究は,特徴学習理論におけるグラフ畳み込みの役割を調べることによって,このギャップに対処することを目的とする。
信号ノイズデータモデルを用いて、2層グラフ畳み込みネットワーク(GCN)とそれらのMLPの最適化と一般化の比較分析を行う。
提案手法は,GNNにおける信号学習と雑音記憶の軌跡を追跡し,学習後の一般化を特徴付ける。
D$はノードの期待度を表し、$q$は$q>2$のReLUアクティベーション関数のパワーである。
この発見は、最適化と一般化の観点から、GNNとMLPの実質的かつ定量的な相違を浮き彫りにしており、この結論は、合成と実世界の両方のデータセットに関する経験的シミュレーションによってさらに裏付けられている。
関連論文リスト
- CNN2GNN: How to Bridge CNN with GNN [59.42117676779735]
蒸留によりCNNとGNNを統一する新しいCNN2GNNフレームワークを提案する。
Mini-ImageNetにおける蒸留ブースターの2層GNNの性能は、ResNet152のような数十層を含むCNNよりもはるかに高い。
論文 参考訳(メタデータ) (2024-04-23T08:19:08Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
本稿では,GNNの逆写像に対する新しい,スケーラブルな近似による学習バイアスを軽減するために,ラベルの効率的な正規化手法,すなわちラベルのデコンボリューション(LD)を提案する。
実験では、LDはOpen Graphデータセットのベンチマークで最先端のメソッドを大幅に上回っている。
論文 参考訳(メタデータ) (2023-09-26T13:09:43Z) - Neighborhood Convolutional Network: A New Paradigm of Graph Neural
Networks for Node Classification [12.062421384484812]
グラフ畳み込みネットワーク(GCN)は、各畳み込み層における近傍の集約と特徴変換を分離する。
本稿では,周辺畳み込みネットワーク(NCN)と呼ばれるGCNの新しいパラダイムを提案する。
このようにして、モデルは、近隣情報を集約するための分離GCNの利点を継承すると同時に、より強力な特徴学習モジュールを開発することができる。
論文 参考訳(メタデータ) (2022-11-15T02:02:51Z) - Parameter Convex Neural Networks [13.42851919291587]
本研究では,ある条件下でのニューラルネットワークのパラメータに関して凸である指数的多層ニューラルネットワーク(EMLP)を提案する。
後期実験では,指数グラフ畳み込みネットワーク(EGCN)を同じアーキテクチャで構築し,グラフ分類データセット上で実験を行う。
論文 参考訳(メタデータ) (2022-06-11T16:44:59Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
本稿では,このグラフからBernoulliをサンプリングしたグラフ上でGNNをトレーニングすることで,WNN(Graphon Neural Network)を学習する問題を考察する。
これらの結果から着想を得た大規模グラフ上でGNNを学習するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-07T15:05:59Z) - Variational models for signal processing with Graph Neural Networks [3.5939555573102853]
本稿では,ニューラルネットワークを用いた点雲の信号処理について述べる。
本研究では,このようなグラフニューラルネットワークの変分モデルを用いて,教師なし学習のためのグラフ上の信号を処理する方法を検討する。
論文 参考訳(メタデータ) (2021-03-30T13:31:11Z) - Node2Seq: Towards Trainable Convolutions in Graph Neural Networks [59.378148590027735]
今回提案するグラフネットワーク層であるNode2Seqは,隣接ノードの重みを明示的に調整可能なノード埋め込みを学習する。
対象ノードに対して,当手法は注意メカニズムを介して隣接ノードをソートし,さらに1D畳み込みニューラルネットワーク(CNN)を用いて情報集約のための明示的な重み付けを行う。
また, 特徴学習のための非局所的情報を, 注意スコアに基づいて適応的に組み込むことを提案する。
論文 参考訳(メタデータ) (2021-01-06T03:05:37Z) - How Neural Networks Extrapolate: From Feedforward to Graph Neural
Networks [80.55378250013496]
勾配勾配降下法によりトレーニングされたニューラルネットワークが、トレーニング分布の支持の外で学んだことを外挿する方法について検討する。
グラフニューラルネットワーク(GNN)は、より複雑なタスクでいくつかの成功を収めている。
論文 参考訳(メタデータ) (2020-09-24T17:48:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。