論文の概要: Evaluating the Utility of GAN Generated Synthetic Tabular Data for Class
Balancing and Low Resource Settings
- arxiv url: http://arxiv.org/abs/2306.13929v1
- Date: Sat, 24 Jun 2023 10:27:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-27 18:09:03.108604
- Title: Evaluating the Utility of GAN Generated Synthetic Tabular Data for Class
Balancing and Low Resource Settings
- Title(参考訳): クラスバランスと低資源設定のためのGAN生成合成語彙データの有用性の評価
- Authors: Nagarjuna Chereddy and Bharath Kumar Bolla
- Abstract要約: この研究はクラスバランス実験に一般化線形モデル(GLM)アルゴリズムを用いた。
低リソース実験では、GAN合成データで強化されたデータに基づいてトレーニングされたモデルは、元のデータよりも優れたリコール値を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The present study aimed to address the issue of imbalanced data in
classification tasks and evaluated the suitability of SMOTE, ADASYN, and GAN
techniques in generating synthetic data to address the class imbalance and
improve the performance of classification models in low-resource settings. The
study employed the Generalised Linear Model (GLM) algorithm for class balancing
experiments and the Random Forest (RF) algorithm for low-resource setting
experiments to assess model performance under varying training data. The recall
metric was the primary evaluation metric for all classification models. The
results of the class balancing experiments showed that the GLM model trained on
GAN-balanced data achieved the highest recall value. Similarly, in low-resource
experiments, models trained on data enhanced with GAN-synthesized data
exhibited better recall values than original data. These findings demonstrate
the potential of GAN-generated synthetic data for addressing the challenge of
imbalanced data in classification tasks and improving model performance in
low-resource settings.
- Abstract(参考訳): 本研究の目的は、分類タスクにおける不均衡データの問題に対処し、低リソース環境での分類モデルの性能を向上させるために、合成データを生成するSMOTE、ADASYN、GAN技術の適合性を評価することである。
この研究は、クラスバランス実験のための一般化線形モデル(GLM)アルゴリズムと低リソース設定実験のためのランダムフォレスト(RF)アルゴリズムを用いて、様々なトレーニングデータの下でモデル性能を評価する。
リコールメトリックは、すべての分類モデルの主要な評価指標であった。
クラスバランス実験の結果, GANバランスデータに基づいてトレーニングしたGLMモデルが最も高いリコール値を得た。
同様に、低リソース実験では、GAN合成データで強化されたデータに基づいてトレーニングされたモデルは、元のデータよりも優れたリコール値を示した。
これらの結果は,低リソース環境下でのモデル性能の向上と分類タスクにおける不均衡データの課題に対処するための,GAN生成合成データの可能性を示している。
関連論文リスト
- Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - Improving SMOTE via Fusing Conditional VAE for Data-adaptive Noise Filtering [0.5735035463793009]
変分オートエンコーダ(VAE)を用いたSMOTEアルゴリズムの拡張フレームワークを提案する。
本稿では,VAEを用いて低次元潜在空間におけるデータ点密度を体系的に定量化し,クラスラベル情報と分類困難度を同時に統合する手法を提案する。
いくつかの不均衡データセットに関する実証的研究は、この単純なプロセスが、ディープラーニングモデルよりも従来のSMOTEアルゴリズムを革新的に改善することを示している。
論文 参考訳(メタデータ) (2024-05-30T07:06:02Z) - Synthetic Information towards Maximum Posterior Ratio for deep learning
on Imbalanced Data [1.7495515703051119]
マイノリティクラスのための合成データを生成することによって,データのバランスをとる手法を提案する。
提案手法は,高エントロピーサンプルを同定することにより,情報領域のバランスを優先する。
実験結果から,提案手法の優れた性能を実証した。
論文 参考訳(メタデータ) (2024-01-05T01:08:26Z) - TRIAGE: Characterizing and auditing training data for improved
regression [80.11415390605215]
TRIAGEは回帰タスクに適した新しいデータキャラクタリゼーションフレームワークで、広範囲の回帰器と互換性がある。
TRIAGEは、共形予測分布を利用して、モデルに依存しないスコアリング方法、TRIAGEスコアを提供する。
TRIAGEの特徴は一貫性があり、複数の回帰設定においてデータの彫刻/フィルタリングによるパフォーマンス向上に有効であることを示す。
論文 参考訳(メタデータ) (2023-10-29T10:31:59Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - Ranking & Reweighting Improves Group Distributional Robustness [14.021069321266516]
本研究では,DRU(Discounted Rank Upweighting)と呼ばれるランキングベースのトレーニング手法を提案し,テストデータ上で強力なOOD性能を示すモデルを学習する。
いくつかの合成および実世界のデータセットの結果は、群分布シフトに頑健なモデルの選択と学習において、グループレベルの(ソフトミニマックスと異なり)アプローチの優れた能力を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-05-09T20:37:16Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z) - Semi-Supervised Learning Based on Reference Model for Low-resource TTS [32.731900584216724]
本稿では,ラベル付きターゲットデータに制限があるニューラルネットワークの半教師付き学習手法を提案する。
実験結果から,対象データに制限のある半教師付き学習手法は,音声合成における自然性と頑健性を達成するために,テストデータの音声品質を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2022-10-25T07:48:07Z) - How robust are pre-trained models to distribution shift? [82.08946007821184]
自己教師付き学習(SSL)と自己エンコーダベースモデル(AE)の相互関係が相互関係に与える影響を示す。
本研究では, 線形ヘッドの潜在バイアスから事前学習したモデルの性能を分離するために, アウト・オブ・ディストリビューション(OOD)データに基づいて訓練された線形ヘッドを用いた新しい評価手法を開発した。
論文 参考訳(メタデータ) (2022-06-17T16:18:28Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
本稿では,FAIRIFという2段階の学習アルゴリズムを提案する。
サンプル重みが計算される再重み付きデータセットの損失を最小限に抑える。
FAIRIFは、様々な種類のバイアスに対して、フェアネスとユーティリティのトレードオフを良くしたモデルが得られることを示す。
論文 参考訳(メタデータ) (2022-01-15T05:14:48Z) - Sampling To Improve Predictions For Underrepresented Observations In
Imbalanced Data [0.0]
データ不均衡は、表現不足な観測におけるモデルの予測性能に悪影響を及ぼす。
本研究では,過去の生産データに基づいてトレーニングされたモデルの性能向上を目標として,この不均衡に対応するためのサンプリングを提案する。
我々はペニシリン生産の先進的なシミュレーションから得られたバイオ医薬品製造データセットに本手法を適用した。
論文 参考訳(メタデータ) (2021-11-17T12:16:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。